Plant-soil feedbacks (PSFs) are interactions among plants, soil organisms, and abiotic soil conditions that influence plant performance, plant species diversity, and community structure, ultimately driving ecosystem processes. We review how climate change will alter PSFs and their potential consequences for ecosystem functioning. Climate change influences PSFs through the performance of interacting species and altered community composition resulting from changes in species distributions. Climate change thus affects plant inputs into the soil subsystem via litter and rhizodeposits and alters the composition of the living plant roots with which mutualistic symbionts, decomposers, and their natural enemies interact. Many of these plant-soil interactions are species-specific and are greatly affected by temperature, moisture, and other climate-related factors. We make a number of predictions concerning climate change effects on PSFs and consequences for vegetation-soil-climate feedbacks while acknowledging that they may be context-dependent, spatially heterogeneous, and temporally variable.
more »
« less
This content will become publicly available on August 1, 2025
The underground network: facilitation in soil bacteria
Our understanding of the fundamental role that soil bacteria play in the structure and functioning of Earth's ecosystems is ever expanding, but insight into the nature of interactions within these bacterial communities remains rudimentary. Bacterial facilitation may enhance the establishment, growth, and succession of eukaryotic biota, elevating the complexity and diversity of the entire soil community and thereby modulating multiple ecosystem functions. Global climate change often alters soil bacterial community composition, which, in turn, impacts other dependent biota. However, the impact of climate change on facilitation within bacterial communities remains poorly understood even though it may have important cascading consequences for entire ecosystems. The wealth of metagenomic data currently being generated gives community ecologists the ability to investigate bacterial facilitation in the natural world and how it affects ecological systems responses to climate change. Here, we review current evidence demonstrating the importance of facilitation in promoting emergent properties such as community diversity, ecosystem functioning, and resilience to climate change in soil bacterial communities. We show that a synthesis is currently missing between the abundant data, newly developed models and a coherent ecological framework that addresses these emergent properties. We highlight that including phylogenetic information, the physicochemical environment, and species‐specific ecologies can improve our ability to infer interactions in natural soil communities. Following these recommendations, studies on bacterial facilitation will be an important piece of the puzzle to understand the consequences of global change on ecological communities and a model to advance our understanding of facilitation in complex communities more generally.
more »
« less
- Award ID(s):
- 2224760
- PAR ID:
- 10537627
- Publisher / Repository:
- Wiley Online Library
- Date Published:
- Journal Name:
- Oikos
- Volume:
- 2024
- Issue:
- 8
- ISSN:
- 0030-1299
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Vestergård, Mette (Ed.)Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness.more » « less
-
Giovannoni, Stephen J; Weedon, James (Ed.)ABSTRACT Rapid climate change in the Arctic is altering microbial structure and function, with important consequences for the global ecosystem. Emerging evidence suggests organisms in higher trophic levels may also influence microbial communities, but whether warming alters these effects is unclear. Wolf spiders are dominant Arctic predators whose densities are expected to increase with warming. These predators have temperature-dependent effects on decomposition via their consumption of fungal-feeding detritivores, suggesting they may indirectly affect the microbial structure as well. To address this, we used a fully factorial mesocosm experiment to test the effects of wolf spider density and warming on litter microbial structure in Arctic tundra. We deployed replicate litter bags at the surface and belowground in the organic soil profile and analyzed the litter for bacterial and fungal community structure, mass loss, and nutrient characteristics after 2 and 14 months. We found there were significant interactive effects of wolf spider density and warming on fungal but not bacterial communities. Specifically, higher wolf spider densities caused greater fungal diversity under ambient temperature but lower fungal diversity under warming at the soil surface. We also observed interactive treatment effects on fungal composition belowground. Wolf spider density influenced surface bacterial composition, but the effects did not change with warming. These findings suggest a widespread predator can have indirect, cascading effects on litter microbes and that effects on fungi specifically shift under future expected levels of warming. Overall, our study highlights that trophic interactions may play important, albeit overlooked, roles in driving microbial responses to warming in Arctic terrestrial ecosystems. IMPORTANCEThe Arctic contains nearly half of the global pool of soil organic carbon and is one of the fastest warming regions on the planet. Accelerated decomposition of soil organic carbon due to warming could cause positive feedbacks to climate change through increased greenhouse gas emissions; thus, changes in ecological dynamics in this region are of global relevance. Microbial structure is an important driver of decomposition and is affected by both abiotic and biotic conditions. Yet how activities of soil-dwelling organisms in higher trophic levels influence microbial structure and function is unclear. In this study, we demonstrate that predicted changes in abundances of a dominant predator and warming interactively affect the structure of litter-dwelling fungal communities in the Arctic. These findings suggest predators may have widespread, indirect cascading effects on microbial communities, which could influence ecosystem responses to future climate change.more » « less
-
Global changes such as increased drought and atmospheric nitrogen deposition perturb both the microbial and plant communities that mediate terrestrial ecosystem functioning. However, few studies consider how microbial responses to global changes may be influenced by interactions with plant communities. To begin to address the role of microbial–plant interactions, we tested the hypothesis that the response of microbial communities to global change depends on the plant community. We characterized bacterial and fungal communities from 395 plant litter samples taken from the Loma Ridge Global Change Experiment, a decade-long global change experiment in Southern California that manipulates rainfall and nitrogen levels across two adjacent ecosystems, a grassland and a coastal sage scrubland. The differences in bacterial and fungal composition between ecosystems paralleled distinctions in plant community composition. In addition to the direct main effects, the global change treatments altered microbial composition in an ecosystem-dependent manner, in support of our hypothesis. The interaction between the drought treatment and ecosystem explained nearly 5% of the variation in bacterial community composition, similar to the variation explained by the ecosystem-independent effects of drought. Unexpectedly, we found that the main effect of drought was approximately four times as strong on bacterial composition as that of nitrogen addition, which did not alter fungal or plant composition. Overall, the findings underscore the importance of considering plant–microbe interactions when considering the transferability of the results of global change experiments across ecosystems.more » « less
-
Abstract Microbial communities are not the easiest to manipulate experimentally in natural ecosystems. However, leaf litter—topmost layer of surface soil—is uniquely suitable to investigate the complexities of community assembly. Here, we reflect on over a decade of collaborative work to address this topic using leaf litter as a model system in Southern California ecosystems. By leveraging a number of methodological advantages of the system, we have worked to demonstrate how four processes—selection, dispersal, drift, and diversification—contribute to bacterial and fungal community assembly and ultimately impact community functioning. Although many dimensions remain to be investigated, our initial results demonstrate that both ecological and evolutionary processes occur simultaneously to influence microbial community assembly. We propose that the development of additional and experimentally tractable microbial systems will be enormously valuable to test the role of eco-evolutionary processes in natural settings and their implications in the face of rapid global change.more » « less