skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Seasonal effects of long-term warming on ecosystem function and bacterial diversity
Across biomes, soil biodiversity promotes ecosystem functions. However, whether this relationship will be maintained within ecosystems under climate change is uncertain. Here, using two long-term soil warming experiments, we investigated how warming affects the relationship between ecosystem functions and bacterial diversity across seasons, soil horizons, and warming duration. Soils were sampled from these warming experiments located at the Harvard Forest Long-Term Ecological Research (LTER) site, where soils had been heated +5°C above ambient for 13 or 28 years at the time of sampling. We assessed seven measurements representative of different ecosystem functions and nutrient pools. We also surveyed bacterial community diversity. We found that ecosystem function was significantly affected by season, with autumn samples having a higher intercept than summer samples in our model, suggesting a higher overall baseline of ecosystem function in the fall. The effect of warming on bacterial diversity was similarly affected by season, where warming in the summer was associated with decreased bacterial evenness in the organic horizon. Despite the decreased bacterial evenness in the warmed plots, we found that the relationship between ecosystem function and bacterial diversity was unaffected by warming or warming duration. Our findings highlight that season is a consistent driver of ecosystem function as well as a modulator of climate change effects on bacterial community evenness.  more » « less
Award ID(s):
1749206 1832210
PAR ID:
10562889
Author(s) / Creator(s):
; ; ; ; ; ;
Editor(s):
Vestergård, Mette
Publisher / Repository:
PLOS One
Date Published:
Journal Name:
PLOS ONE
Volume:
19
Issue:
10
ISSN:
1932-6203
Page Range / eLocation ID:
e0311364
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soil microbial traits drive ecosystem functions, which can explain the positive correlation between microbial functional diversity and ecosystem function. However, microbial adaptation to climate change related warming stress can shift microbial traits with direct implications for soil carbon cycling. Here, we investigated how long-term warming affects the relationship between microbial trait diversity and ecosystem function. Soils were sampled after 24 years of +5°C warming alongside unheated control soils from the Harvard Forest Long-Term Ecological Research site. Ecosystem function was estimated from six different enzyme activities and microbial biomass. Functional diversity was calculated from metatranscriptomics sequencing, where reads were assigned to yield, acquisition, or stress trait categories. We found that in organic horizon soils, warming decreased the richness of acquisition-related traits. In the mineral soils, we observed that heated soils exhibited a negative relationship with the richness of acquisition-related traits. These results suggest that microbial communities exposed to long-term warming are shifting away from a resource acquisition life history strategy. 
    more » « less
  2. 1. Climate change is projected to cause shifts in precipitation regimes globally, leading to intensified periods of precipitation and droughts. Most studies that have explored the influence of changing precipitation regimes on ecosystems have focused on changes in mean annual precipitation, rather than the variance around the mean. Soil fungi are ubiquitous organisms that drive ecosystem processes, but it is unknown how they respond to long-term increased interannual precipitation variability. 2. Here, we investigated the influence of long-term increased precipitation variability and host type on soil fungal diversity and community composition in a dryland ecosystem. We collected 300 soil samples from two time points and different host type substrate types at a long-term precipitation variability experiment at the Jornada Long Term Ecological Research site. Next, we used amplicon sequencing to characterize soil fungal communities. 3. Soil fungal alpha diversity and community composition were strongly affected by host type and sampling year, and increased precipitation variability caused a modest, statistically insignificant, decrease in soil fungal evenness. Furthermore, results from our structural equational model showed that the decrease in grass-associated soil fungal richness was likely an indirect result of host decline in response to increased precipitation variability. 4. Synthesis. Our work demonstrates effects of increase in interannual precipitation variability on soil fungi, and that plant hosts play a key role in mediating soil fungal responses. 
    more » « less
  3. ABSTRACT Tundra ecosystems are typically carbon (C) rich but nitrogen (N) limited. Since biological N 2 fixation is the major source of biologically available N, the soil N 2 -fixing (i.e., diazotrophic) community serves as an essential N supplier to the tundra ecosystem. Recent climate warming has induced deeper permafrost thaw and adversely affected C sequestration, which is modulated by N availability. Therefore, it is crucial to examine the responses of diazotrophic communities to warming across the depths of tundra soils. Herein, we carried out one of the deepest sequencing efforts of nitrogenase gene ( nifH ) to investigate how 5 years of experimental winter warming affects Alaskan soil diazotrophic community composition and abundance spanning both the organic and mineral layers. Although soil depth had a stronger influence on diazotrophic community composition than warming, warming significantly ( P <  0.05) enhanced diazotrophic abundance by 86.3% and aboveground plant biomass by 25.2%. Diazotrophic composition in the middle and lower organic layers, detected by nifH sequencing and a microarray-based tool (GeoChip), was markedly altered, with an increase of α-diversity. Changes in diazotrophic abundance and composition significantly correlated with soil moisture, soil thaw duration, and plant biomass, as shown by structural equation modeling analyses. Therefore, more abundant diazotrophic communities induced by warming may potentially serve as an important mechanism for supplementing biologically available N in this tundra ecosystem. IMPORTANCE With the likelihood that changes in global climate will adversely affect the soil C reservoir in the northern circumpolar permafrost zone, an understanding of the potential role of diazotrophic communities in enhancing biological N 2 fixation, which constrains both plant production and microbial decomposition in tundra soils, is important in elucidating the responses of soil microbial communities to global climate change. A recent study showed that the composition of the diazotrophic community in a tundra soil exhibited no change under a short-term (1.5-year) winter warming experiment. However, it remains crucial to examine whether the lack of diazotrophic community responses to warming is persistent over a longer time period as a possibly important mechanism in stabilizing tundra soil C. Through a detailed characterization of the effects of winter warming on diazotrophic communities, we showed that a long-term (5-year) winter warming substantially enhanced diazotrophic abundance and altered community composition, though soil depth had a stronger influence on diazotrophic community composition than warming. These changes were best explained by changes in soil moisture, soil thaw duration, and plant biomass. These results provide crucial insights into the potential factors that may impact future C and N availability in tundra regions. 
    more » « less
  4. Abstract Human activities have led to increased deposition of nitrogen (N) and phosphorus (P) into soils. Nutrient enrichment of soils is known to increase plant biomass and rates of microbial litter decomposition. However, interacting effects of hydrologic position and associated changes to soil moisture can constrain microbial activity and lead to unexpected nutrient feedbacks on microbial community structure–function relationships. Examining feedbacks of nutrient enrichment on decomposition rates is essential for predicting microbial contributions to carbon (C) cycling as atmospheric deposition of nutrients persists. This study explored how long‐term nutrient addition and contrasting litter chemical composition influenced soil bacterial community structure and function. We hypothesized that long‐term nutrient enrichment of low fertility soils alters bacterial community structure and leads to higher rates of litter decomposition especially for low C:N litter, but low‐nutrient and dry conditions limit microbial decomposition of high C:N ratio litter. We leveraged a long‐term fertilization experiment to test how nutrient enrichment and hydrologic manipulation (due to ditches) affected decomposition and soil bacterial community structure in a nutrient‐poor coastal plain wetland. We conducted a litter bag experiment and characterized litter‐associated and bulk soil microbiomes using 16S rRNA bacterial sequencing and quantified litter mass losses and soil physicochemical properties. Results revealed that distinct bacterial communities were involved in decomposing higher C:N ratio litter more quickly in fertilized compared to unfertilized soils especially under drier soil conditions, while decomposition rates of lower C:N ratio litter were similar between fertilized and unfertilized plots. Bacterial community structure in part explained litter decomposition rates, and long‐term fertilization and drier hydrologic status affected bacterial diversity and increased decomposition rates. However, community composition associated with high C:N litter was similar in wetter plots with available nitrate detected, regardless of fertilization treatment. This study provides insight into long‐term fertilization effects on soil bacterial diversity and composition, decomposition, and the increased potential for soil C loss as nutrient enrichment and hydrology interact to affect historically low‐nutrient ecosystems. 
    more » « less
  5. ABSTRACT Global change drivers alter multiple components of community composition, with cascading impacts on ecosystem stability. However, it remains largely unknown how interactions among global change drivers will alter community synchrony, especially across successional timescales. We analysed a 22‐year time series of grassland community data from Cedar Creek, USA, to examine the joint effects of pulse soil disturbance and press nitrogen addition on community synchrony, richness, evenness and stability during transient and post‐transient periods of succession. Using multiple regression and structural equation modelling, we found that nitrogen addition and soil disturbance decreased both synchrony and stability, thereby weakening the negative synchrony–stability relationship. We found evidence of the portfolio effect during transience, but once communities settled on a restructured state post‐transience, diversity no longer influenced the synchrony–stability relationship. Differences between transient and post‐transient drivers of synchrony and stability underscore the need for long‐term data to inform ecosystem management under ongoing global change. 
    more » « less