This content will become publicly available on September 1, 2025
- Award ID(s):
- 1915620
- NSF-PAR ID:
- 10537755
- Publisher / Repository:
- Taylor & Francis
- Date Published:
- Journal Name:
- International Journal of Human–Computer Interaction
- Volume:
- 40
- Issue:
- 17
- ISSN:
- 1044-7318
- Page Range / eLocation ID:
- 4725 to 4744
- Subject(s) / Keyword(s):
- “This is not a game” TINAG alternative reality games participatory narratives pervasive games virtual environments PRISMA methodology survey validation
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Understanding players' mental models are crucial for game designers who wish to successfully integrate player-AI interactions into their game. However, game designers face the difficult challenge of anticipating how players model these AI agents during gameplay and how they may change their mental models with experience. In this work, we conduct a qualitative study to examine how a pair of players develop mental models of an adversarial AI player during gameplay in the multiplayer drawing game iNNk. We conducted ten gameplay sessions in which two players (n = 20, 10 pairs) worked together to defeat an AI player. As a result of our analysis, we uncovered two dominant dimensions that describe players' mental model development (i.e., focus and style). The first dimension describes the focus of development which refers to what players pay attention to for the development of their mental model (i.e., top-down vs. bottom-up focus). The second dimension describes the differences in the style of development, which refers to how players integrate new information into their mental model (i.e., systematic vs. reactive style). In our preliminary framework, we further note how players process a change when a discrepancy occurs, which we observed occur through comparisons (i.e., compare to other systems, compare to gameplay, compare to self). We offer these results as a preliminary framework for player mental model development to help game designers anticipate how different players may model adversarial AI players during gameplay.more » « less
-
Integrating fabrication activities into existing video games provides opportunities for players to construct objects from their gameplay and bring the digital content into the physical world. In our prior work, we outlined a framework and developed a toolkit for integrating fabrication activities within existing digital games. Insights from our prior study highlighted the challenge of aligning fabrication mechanics with the existing game mechanics in order to strengthen the player aesthetics. In this paper, we address this challenge and build on our prior work by adding fabrication components to the Mechanics-Dynamics-Aesthetics (MDA) framework. We use this f-MDA framework to analyze the 47 fabrication events from the prior study. We list the new player-object aesthetics that emerge from integrating the existing game mechanics with fabrication mechanics. We identify connections between these emergent player-object aesthetics and the existing game mechanics. We discuss how designers can use this mapping to identify potential game mechanics for integrating with fabrication activities.more » « less
-
arXiv:2402.05300v2 (Ed.)This paper considers a multi-player resource-sharing game with a fair reward allocation model. Multiple players choose from a collection of resources. Each resource brings a random reward equally divided among the players who choose it. We consider two settings. The first setting is a one-slot game where the mean rewards of the resources are known to all the players, and the objective of player 1 is to maximize their worst-case expected utility. Certain special cases of this setting have explicit solutions. These cases provide interesting yet non-intuitive insights into the problem. The second setting is an online setting, where the game is played over a finite time horizon, where the mean rewards are unknown to the first player. Instead, the first player receives, as feedback, the rewards of the resources they chose after the action. We develop a novel Upper Confidence Bound (UCB) algorithm that minimizes the worst-case regret of the first player using the feedback received.more » « less
-
Idle games are a recent minimalist gaming phenomenon in which the game is left running with little player interaction. We deepen understanding of idle games and their characteristics by developing a taxonomy and identifying game features. This paper examines 66 idle games using a grounded theory approach to analyze play, game mechanics, rewards, interactivity, progress rate, and user interface. To establish a clearly bounded definition of idle games, we analyzed 10 non-idle games with the same approach. We discuss how idle games move players from playing to planning, how they question dominant assumptions about gameplay, and their unusual use of resources such as player attention and computer cycles. Our work illuminates opportunities for the design of idle games, suggests design implications, and provides a framework for researchers to clearly articulate questions about this genre.more » « less
-
Devising models that reliably recognize player goals is a key challenge in creating player-adaptive games. Player goal recognition is the task of automatically recognizing the intent of a player from a sequence of observed player actions in a game environment. In open-world digital games, players often undertake suboptimal and varied sequences of actions to achieve goals, and the high degree of freedom afforded to players makes it challenging to identify sequential patterns that lead toward specific goals. To address these issues, we present a player goal recognition framework that utilizes a fine-tuned T5 language model, which incorporates our novel attention mechanism called Temporal Contrary Attention (TCA). The T5 language model enables the framework to exploit correlations between observations through non-sequential self-attention within input sequences, while TCA enables the framework to learn to eliminate goal hypotheses by considering counterevidence within a temporal window. We evaluate our approach using game trace data collected from 144 players' interactions with an open-world educational game. Specifically, we investigate the predictive capacity of our approach to recognize player goals as well as player plans represented as abstract actions. Results show that our approach outperforms non-linguistic machine learning approaches as well as T5 without TCA. We discuss the implications of these findings for the design and development of player goal recognition models to create player-adaptive games.