skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: PathFinder: Attention-Driven Dynamic Non-Line-of-Sight Tracking with a Mobile Robot
The study of non-line-of-sight (NLOS) imaging is growing due to its many potential applications, including rescue operations and pedestrian detection by self-driving cars. However, implementing NLOS imaging on a moving camera remains an open area of research. Existing NLOS imaging methods rely on time-resolved detectors and laser configurations that require precise optical alignment, making it difficult to deploy them in dynamic environments. This work proposes a data-driven approach to NLOS imaging, PathFinder, that can be used with a standard RGB camera mounted on a small, power-constrained mobile robot, such as an aerial drone. Our experimental pipeline is designed to accurately estimate the 2D trajectory of a person who moves in a Manhattan-world environment while remaining hidden from the camera’s fieldof- view. We introduce a novel approach to process a sequence of dynamic successive frames in a line-of-sight (LOS) video using an attention-based neural network that performs inference in real-time. The method also includes a preprocessing selection metric that analyzes images from a moving camera which contain multiple vertical planar surfaces, such as walls and building facades, and extracts planes that return maximum NLOS information. We validate the approach on in-the-wild scenes using a drone for video capture, thus demonstrating low-cost NLOS imaging in dynamic capture environments.  more » « less
Award ID(s):
1909192
PAR ID:
10537758
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
IEEE International Conference on Intelligent Robots and Systems
Date Published:
Format(s):
Medium: X
Location:
Abu Dhabi, UAE
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions. 
    more » « less
  2. he pervasive operation of customer drones, or small-scale unmanned aerial vehicles (UAVs), has raised serious concerns about their privacy threats to the public. In recent years, privacy invasion events caused by customer drones have been frequently reported. Given such a fact, timely detection of invading drones has become an emerging task. Existing solutions using active radar, video or acoustic sensors are usually too costly (especially for individuals) or exhibit various constraints (e.g., requiring visual line of sight). Recent research on drone detection with passive RF signals provides an opportunity for low-cost deployment of drone detectors on commodity wireless devices. However, the state of the arts in this direction rely on line-of-sight (LOS) RF signals, which makes them only work under very constrained conditions. The support of more common scenarios, i.e., non-line-of-sight (NLOS), is still missing for low-cost solutions. In this paper, we propose a novel detection system for privacy invasion caused by customer drone. Our system is featured with accurate NLOS detection with low-cost hardware (under $50). By exploring and validating the relationship between drone motions and RF signal under the NLOS condition, we find that RF signatures of drones are somewhat “amplified” by multipaths in NLOS. Based on this observation, we design a two-step solution which first classifies received RSS measurements into LOS and NLOS categories; deep learning is then used to extract the signatures and ultimately detect the drones. Our experimental results show that LOS and NLOS signals can be identified at accuracy rates of 98.4% and 96% respectively. Our drone detection rate for NLOS condition is above 97% with a system implemented using Raspberry PI 3 B+. 
    more » « less
  3. Abstract Non-Line-Of-Sight (NLOS) imaging aims at recovering the 3D geometry of objects that are hidden from the direct line of sight. One major challenge with this technique is the weak available multibounce signal limiting scene size, capture speed, and reconstruction quality. To overcome this obstacle, we introduce a multipixel time-of-flight non-line-of-sight imaging method combining specifically designed Single Photon Avalanche Diode (SPAD) array detectors with a fast reconstruction algorithm that captures and reconstructs live low-latency videos of non-line-of-sight scenes with natural non-retroreflective objects. We develop a model of the signal-to-noise-ratio of non-line-of-sight imaging and use it to devise a method that reconstructs the scene such that signal-to-noise-ratio, motion blur, angular resolution, and depth resolution are all independent of scene depth suggesting that reconstruction of very large scenes may be possible. 
    more » « less
  4. IEEE (Ed.)
    Not AvailableThis paper presents a Light Detection and Ranging (LiDAR) based technique for identifying non-line-of-sight (NLoS) communication paths in indoor millimeter-wave (mmWave) environments. This is achieved by using LiDAR distance and backscattered intensity measurements to i) create a map of the communication environment, and ii) identify a set of potential reflective surfaces for NLoS communication. Experimental results demonstrate that the proposed technique, which combines environmental geometry and LiDAR scatter data for ray-tracing, achieves performance comparable to traditional exhaustive search beam training methods, particularly for first-ranked (top- 1) alternative NLoS paths. This offers a promising solution for enhancing indoor mmWave communications in dynamic environments prone to line-of-sight link blockages without the need for a fully dedicated beam training stage. 
    more » « less
  5. Light transport contains all light information between a light source and an image sensor. As an important application of light transport, dual photography has been a popular research topic, but it is challenged by long acquisition time, low signal-to-noise ratio, and the storage or processing of a large number of measurements. In this Letter, we propose a novel hardware setup that combines a flying-spot micro-electro mechanical system (MEMS) modulated projector with an event camera to implement dual photography for 3D scanning in both line-of-sight (LoS) and non-line-of-sight (NLoS) scenes with a transparent object. In particular, we achieved depth extraction from the LoS scenes and 3D reconstruction of the object in a NLoS scene using event light transport. 
    more » « less