skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Fast Computational Periscopy in Challenging Ambient Light Conditions through Optimized Preconditioning
Non-line-of-sight (NLOS) imaging is a rapidly advancing technology that provides asymmetric vision: seeing without being seen. Though limited in accuracy, resolution, and depth recovery compared to active methods, the capabilities of passive methods are especially surprising because they typically use only a single, inexpensive digital camera. One of the largest challenges in passive NLOS imaging is ambient background light, which limits the dynamic range of the measurement while carrying no useful information about the hidden part of the scene. In this work we propose a new reconstruction approach that uses an optimized linear transformation to balance the rejection of uninformative light with the retention of informative light, resulting in fast (video-rate) reconstructions of hidden scenes from photographs of a blank wall under high ambient light conditions.  more » « less
Award ID(s):
1955219
PAR ID:
10267299
Author(s) / Creator(s):
;
Date Published:
Journal Name:
Proc. IEEE Int. Conf. Computational Photography
Page Range / eLocation ID:
1 to 9
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. We propose a novel non-line-of-sight (NLOS) imaging framework with long-wave infrared (IR). At long-wave IR wavelengths, certain physical parameters are more favorable for high-fidelity reconstruction. In contrast to prior work in visible light NLOS, at long-wave IR wavelengths, the hidden heat source acts as a light source. This simplifies the problem to a single bounce problem. In addition, surface reflectance has a much stronger specular reflection in the long-wave IR spectrum than in the visible light spectrum. We reformulate a light transport model that leverages these favorable physical properties of long-wave IR. Specifically, we demonstrate 2D shape recovery and 3D localization of a hidden object. Furthermore, we demonstrate near real-time and robust NLOS pose estimation of a human figure, the first such demonstration, to our knowledge. 
    more » « less
  2. The study of non-line-of-sight (NLOS) imaging is growing due to its many potential applications, including rescue operations and pedestrian detection by self-driving cars. However, implementing NLOS imaging on a moving camera remains an open area of research. Existing NLOS imaging methods rely on time-resolved detectors and laser configurations that require precise optical alignment, making it difficult to deploy them in dynamic environments. This work proposes a data-driven approach to NLOS imaging, PathFinder, that can be used with a standard RGB camera mounted on a small, power-constrained mobile robot, such as an aerial drone. Our experimental pipeline is designed to accurately estimate the 2D trajectory of a person who moves in a Manhattan-world environment while remaining hidden from the camera’s fieldof- view. We introduce a novel approach to process a sequence of dynamic successive frames in a line-of-sight (LOS) video using an attention-based neural network that performs inference in real-time. The method also includes a preprocessing selection metric that analyzes images from a moving camera which contain multiple vertical planar surfaces, such as walls and building facades, and extracts planes that return maximum NLOS information. We validate the approach on in-the-wild scenes using a drone for video capture, thus demonstrating low-cost NLOS imaging in dynamic capture environments. 
    more » « less
  3. Abstract Non-line-of-sight (NLOS) imaging is a rapidly growing field seeking to form images of objects outside the field of view, with potential applications in autonomous navigation, reconnaissance, and even medical imaging. The critical challenge of NLOS imaging is that diffuse reflections scatter light in all directions, resulting in weak signals and a loss of directional information. To address this problem, we propose a method for seeing around corners that derives angular resolution from vertical edges and longitudinal resolution from the temporal response to a pulsed light source. We introduce an acquisition strategy, scene response model, and reconstruction algorithm that enable the formation of 2.5-dimensional representations—a plan view plus heights—and a 180field of view for large-scale scenes. Our experiments demonstrate accurate reconstructions of hidden rooms up to 3 meters in each dimension despite a small scan aperture (1.5-centimeter radius) and only 45 measurement locations. 
    more » « less
  4. Non-line-of-sight (NLOS) detection and ranging aim to identify hidden objects by sensing indirect light reflections. Although numerous computational methods have been proposed for NLOS detection and imaging, the post-signal processing required by peripheral circuits remains complex. One possible solution for simplifying NLOS detection and ranging involves the use of neuromorphic devices, such as memristors, which have intrinsic resistive-switching capabilities and can store spatiotemporal information. In this study, we employed the memristive spike-timing-dependent plasticity learning rule to program the time-of-flight (ToF) depth information directly into a memristor medium. By coupling the transmitted signal from the source with the photocurrent from the target object into a single memristor unit, we were able to induce a tunable programming pulse based on the time interval between the two signals that were superimposed. Here, this neuromorphic ToF principle is employed to detect and range NLOS objects without requiring complex peripheral circuitry to process raw signals. We experimentally demonstrated the effectiveness of the neuromorphic ToF principle by integrating a HfO2 memristor and an avalanche photodiode to detect NLOS objects in multiple directions. This technology has potential applications in various fields, such as automotive navigation, machine learning, and biomedical engineering. 
    more » « less
  5. We investigate the propagation losses in terahertz (THz) non-line-of-sight (NLoS) imaging and compare the performance to the optical counterpart. NLoS imaging exploits the multiple reflections of electromagnetic waves from surrounding surfaces to reconstruct the geometry and location of hidden objects. THz and visible/infrared radiations are attractive for NLoS imaging due to the short wavelengths and practical apertures that can support this non-conventional imaging. However, the scattering mechanisms vary significantly and determine the quality of the reconstructed images. This work compares for the first time the free-space path loss and rough surface scattering losses of a simple THz and optical NLoS imaging topology. Because specular reflections are dominant in THz scattering while optical systems suffer from strong diffuse scattering, THz NLoS imaging systems can receive considerably stronger backscattered signals. 
    more » « less