skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Novel Optical Test Bed for Measuring the Light Transmission Properties of Plastic Optical Fiber Under Bending
Plastic optical fibers (POF) possess the potential to occupy a distinctive role in contemporary communication systems, bridging the gap between the attributes of copper cable and glass fiber. POF stands out as a more lightweight and cost-effective alternative to glass fiber, while concurrently offering significantly enhanced communication bandwidth compared to traditional copper cables of equivalent cost or weight. However, the novelty of this technology introduces a challenge, as there is limited understanding of how POF cables may behave under specific bending conditions, particularly in the case of the latest multi-core fibers. This paper outlines a research endeavor aimed at establishing a cost-effective and reproducible testing framework for assessing the light transmission properties of plastic optical fibers during various bending conditions. The methodology involves partial automation using National Instruments LabVIEW for servo motor control, and optical power measurements were taken using the Thorlabs PM100USB. The investigation encompassed measurements across diverse bending angles and radii for five distinct types of fibers: Eska MH, Eska BH, Eska GH, a Graded Index fiber, and a Multi Core Fiber.  more » « less
Award ID(s):
2153667
PAR ID:
10537871
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
2024 IEEE Southeast Conference
Date Published:
ISBN:
979-8-3503-1710-7
Page Range / eLocation ID:
581-585
Subject(s) / Keyword(s):
Plastic Optical Fiber (POF) Step Index (SI) Graded Index (GI) Multi Core (MC) Bending
Format(s):
Medium: X
Location:
Atlanta, GA
Sponsoring Org:
National Science Foundation
More Like this
  1. Polymer optical fibers (POFs) are playing an important role in industrial applications nowadays due to their ease of handling and resilience to bending and environmental effects. A POF can tolerate a bending radius of less than 20 mm, it can work in environments with temperatures ranging from −55 °C to +105 °C, and its lifetime is around 20 years. In this paper, we propose a novel, rigorous, and efficient computational model to estimate the most important parameters that determine the characteristics of light propagation through a step-index polymer optical fiber (SI-POF). The model uses attenuation, diffusion, and mode group delay as functions of the propagation angle to characterize the optical power transmission in the SI-POF. Taking into consideration the mode group delay allows us to generalize the computational model to be applicable to POFs with different index profiles. In particular, we use experimental measurements of spatial distributions and frequency responses to derive accurate parameters for our SI-POF simulation model. The experimental data were measured at different fiber lengths according to the cut-back method. This method consists of taking several measurements such as frequency responses, angular intensity distributions, and optical power measurements over a long length of fiber (>100 m), then cutting back the fiber while maintaining the same launching conditions and repeating the measurements on the shorter lengths of fiber. The model derivation uses an objective function to minimize the differences between the experimental measurements and the simulated results. The use of the matrix exponential method (MEM) to implement the SI-POF model results in a computationally efficient model that is suitable for POF-based system-level studies. The efficiency gain is due to the independence of the calculation time with respect to the fiber length, in contrast to the classic analytical solutions of the time-dependent power flow equation. The robustness of the proposed model is validated by calculating the goodness-of-fit of the model predictions relative to experimental data. 
    more » « less
  2. This study investigates the impact of under-filled and over-filled launching configurations on the transmission properties of Plastic Optical Fiber (POF). Experimental analyses on step and graded index fibers reveal differences in spatial and frequency properties under these launching conditions. Results show that the under-filled configuration leads to narrower radial profiles and Encircled Angular Flux (EAF) compared to the over-filled configuration. Additionally, under-filled launching produces better frequency response and larger bandwidth, particularly notable in shorter fibers. Results show that the under-filled launching significantly improves transmission properties, offering potential improvements in POF applications. 
    more » « less
  3. The application areas for plastic optical fibers such as in-building or aircraft networks usually have tight power budgets and require multiple passive components. In addition, advanced modulation formats are being considered for transmission over plastic optical fibers (POFs) to increase spectral efficiency. In this scenario, there is a clear need for a flexible and dynamic system-level simulation framework for POFs that includes models of light propagation in POFs and the components that are needed to evaluate the entire system performance. Until recently, commercial simulation software either was designed specifically for single-mode glass fibers or modeled individual guided modes in multimode fibers with considerable detail, which is not adequate for large-core POFs where there are millions of propagation modes, strong mode coupling and high variability. These are some of the many challenges involved in the modeling and simulation of POF-based systems. Here, we describe how we are addressing these challenges with models based on an intensity-vs-angle representation of the multimode signal rather than one that attempts to model all the modes in the fiber. Furthermore, we present model approaches for the individual components that comprise the POF-based system and how the models have been incorporated into system-level simulations, including the commercial software packages SimulinkTM and ModeSYSTM. 
    more » « less
  4. The application of Plastic Optical Fibers (POF) as transmission medium in avionics systems requires the introduction of a number of connections that affect both the power budget and the system bandwidth. Additionally, the use of air-gap connectors in order to avoid fiber damage by physical contact through the vibrations induces statistically variable positional shifts that add to the already large variability present in POF based systems. Therefore, it is important to incorporate connector variability to obtain realistic simulation results of the performance of POF avionics links. Our aim here is to evaluate the impact of this variability on transmission properties by using a connector model that includes lateral and longitudinal offsets and performing Monte Carlo simulations of several avionics scenarios using a POF propagation matrix framework. 
    more » « less
  5. The substitution of traditional copper power transmission cables with lightweight copper–carbon nanotube (Cu–CNT) composite fibers is critical for reducing the weight, fuel consumption, and CO2 emissions of automobiles and aircrafts. Such a replacement will also allow for lowering the transmission power loss in copper cables resulting in a decrease in coal and gas consumption, and ultimately diminishing the carbon footprint. In this work, we created a lightweight Cu–CNT composite fiber through a multistep scalable process, including spinning, densification, functionalization, and double-layer copper deposition. The characterization and testing of the fabricated fiber included surface morphology, electrical conductivity, mechanical strength, crystallinity, and ampacity (current density). The electrical conductivity of the resultant composite fiber was measured to be 0.5 × 106 S/m with an ampacity of 0.18 × 105 A/cm2. The copper-coated CNT fibers were 16 times lighter and 2.7 times stronger than copper wire, as they revealed a gravimetric density of 0.4 g/cm3 and a mechanical strength of 0.68 GPa, suggesting a great potential in future applications as lightweight power transmission cables. 
    more » « less