skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, June 12 until 2:00 AM ET on Friday, June 13 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 19, 2025

Title: Predicting Neoantigens for Cancer Using Next-Generation IEDB & CEDAR Tools
Cancer is a group of diseases characterized by uncontrolled growth and spread of abnormal cells. The underlying cause of cancer relates to the cell cycle, during which DNA is replicated. Cancer cells accumulate DNA mutations that help them acquire cancerous features, such as evading cell death and indefinite growth [1]. If these DNA mutations are in coding regions, they are translated to mutated proteins. The epitopes that contain these mutations are called neoantigens. Neoantigens are highly tumor-specific and can be targeted with immunotherapies [2]. During cell division, tumor suppressor genes play a role in the case of DNA damage or replication errors. The p53 protein is a tumor suppressor gene product that prevents tumor formation by activating processes that block cell division when DNA damage has occurred [3]. Mutant p53 does not effectively bind DNA or activate the production of proteins necessary for the stop signal. This project explored a hypothesis that a set of distinct p53 protein mutations can be selected to serve as potential targets for cancer immunotherapy and vaccines by using immunoinformatics predictive analysis tools. By comparing these potential targets with experimental results, we can predict epitopes that may serve as neoantigen targets for immunotherapy. We identified candidate immunogenic epitopes using the NCI’s TP53 Database (NCI DB - tp53.isb-cgc.org), Cancer Epitope Database and Analysis Resource (CEDAR - cedar.iedb.org), and a powerful new bioinformatics tool (nextgen-tools.iedb.org/) [4] hosted by Immune Epitope Database (IEDB - iedb.org) and CEDAR.  Comparing predicted epitopes to highly mutable regions of p53 in tumor variants from NCI DB revealed areas of overlap that may be priority candidate epitopes for immunotherapy.  Experimental data from CEDAR tested the immunogenicity of normal and mutated protein versions to help avoid harmful cross-reactions. These results help predict cancer epitope amino acid sequences relevant to understanding the immune system's role in cancer progression, prevention, and treatment. These studies also set the stage for important subsequent undergraduate research projects to further characterize predicted cancer neoantigens.  more » « less
Award ID(s):
2055036
PAR ID:
10537891
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Zenodo
Date Published:
Journal Name:
Journal of advanced technological education
ISSN:
2832-9627
Subject(s) / Keyword(s):
p53 mutations neoantigens cancer CEDAR bioinfomatics immunotherapeutic Open Access Resources
Format(s):
Medium: X
Right(s):
Creative Commons Attribution 4.0 International
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Mutations in theTP53tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specificTP53missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position—R273C vs. R273H—has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors. 
    more » « less
  2. Pancreatic ductal adenocarcinoma (PDAC) is an aggressive cancer without effective treatments. It is characterized by activating KRAS mutations and p53 alterations. However, how these mutations dysregulate cancer-cell-intrinsic gene programs to influence the immune landscape of the tumor microenvironment (TME) remains poorly understood. Here, we show that p53^(R172H) establishes an immunosuppressive TME, diminishes the efficacy of immune checkpoint inhibitors (ICIs), and enhances tumor growth. Our findings reveal that the upregulation of the immunosuppressive chemokine Cxcl1 mediates these pro-tumorigenic functions of p53^(R172H). Mechanistically, we show that p53^(R172H) associates with the distal enhancers of the Cxcl1 gene, increasing enhancer activity and Cxcl1 expression. p53^(R172H) occupies these enhancers in an NF-κB-pathway-dependent manner, suggesting NF-κB’s role in recruiting p53^(R172H) to the Cxcl1 enhancers. Our work uncovers how a common mutation in a tumor-suppressor transcription factor appropriates enhancers, stimulating chemokine expression and establishing an immunosuppressive TME that diminishes ICI efficacy in PDAC. 
    more » « less
  3. Musier-Forsyth, Karin (Ed.)
    Tumor suppressor protein p53 is regulated in a number of ways, including during initiation of TP53 mRNA translation. The 50 end of TP53 mRNA contains regulatory structures that enable noncanonical initiation using mechanisms that remain poorly described. Here we analyze per-nucleotide reactivity changes in the 50 end secondary structure of TP53 mRNA under in-cell conditions using A549 human lung carcinoma cells. We first construct a cell-free secondary structure model using SHAPE reagent 5-nitroisatoic anhydride on gently extracted and deproteinated RNA. We observe previously described regulatory features of the TP53 mRNA 50 end including two motifs which we refer to as long stem-loop (LSL) and short stem-loop (SSL), respectively. We observe a domain-forming helix that groups LSL and SSL, forming a three-helix junction. Applying in-cell selective 20 hydroxyl acylation analyzed by primer extension and mutational profiling, we assess reactivity profiles with unstressed cells and with chemically induced stress conditions expected to stimulate TP53 cap-independent translation. We analyze the effects of etoposide-induced DNA damage, CoCl2-induced hypoxia, and 50 cap inhibition with 4EGI-1 treatment. Identifying stress-associated changes in the TP53 50 end may help elucidate therole of regulatory RNA structure in cap-independent translation. Using DSHAPE, we identify in-cell protection sites that correspond with previously described RNA–protein binding sites on the apical loops of LSL and SSL. Furthermore, we identify several other potential interaction sites, some associated with specific types of stress. Some noteworthy changes include DeltaSHAPE sites proximal to the start codons, at the three-helix junction and on the domain-forming helix. We summarize potential interactions on the cell-free secondary structure model. 
    more » « less
  4. null (Ed.)
    Background Despite approval of immunotherapy for a wide range of cancers, the majority of patients fail to respond to immunotherapy or relapse following initial response. These failures may be attributed to immunosuppressive mechanisms co-opted by tumor cells. However, it is challenging to use conventional methods to systematically evaluate the potential of tumor intrinsic factors to act as immune regulators in patients with cancer. Methods To identify immunosuppressive mechanisms in non-responders to cancer immunotherapy in an unbiased manner, we performed genome-wide CRISPR immune screens and integrated our results with multi-omics clinical data to evaluate the role of tumor intrinsic factors in regulating two rate-limiting steps of cancer immunotherapy, namely, T cell tumor infiltration and T cell-mediated tumor killing. Results Our studies revealed two distinct types of immune resistance regulators and demonstrated their potential as therapeutic targets to improve the efficacy of immunotherapy. Among them, PRMT1 and RIPK1 were identified as a dual immune resistance regulator and a cytotoxicity resistance regulator, respectively. Although the magnitude varied between different types of immunotherapy, genetically targeting PRMT1 and RIPK1 sensitized tumors to T-cell killing and anti-PD-1/OX40 treatment. Interestingly, a RIPK1-specific inhibitor enhanced the antitumor activity of T cell-based and anti-OX40 therapy, despite limited impact on T cell tumor infiltration. Conclusions Collectively, the data provide a rich resource of novel targets for rational immuno-oncology combinations. 
    more » « less
  5. Immunotherapy is an emerging form of cancer therapy that is associated with promising outcomes. However, most cancer patients either do not respond to immunotherapy or develop resistance to treatment. The resistance to immunotherapy is poorly understood compared to chemotherapy and radiotherapy. Since immunotherapy targets cells within the tumor microenvironment, understanding the behavior and interactions of different cells within that environment is essential to adequately understand both therapy options and therapy resistance. This review focuses on reviewing and analyzing the special features of cancer stem cells (CSCs), which we believe may contribute to cancer resistance to immunotherapy. The mechanisms are classified into three main categories: mechanisms related to surface markers which are differentially expressed on CSCs and help CSCs escape from immune surveillance and immune cells killing; mechanisms related to CSC-released cytokines which can recruit immune cells and tame hostile immune responses; and mechanisms related to CSC metabolites which modulate the activities of infiltrated immune cells in the tumor microenvironment. This review also discusses progress made in targeting CSCs with immunotherapy and the prospect of developing novel cancer therapies. 
    more » « less