Mutations in the
This content will become publicly available on August 19, 2025
- Award ID(s):
- 2055036
- NSF-PAR ID:
- 10537891
- Publisher / Repository:
- Zenodo
- Date Published:
- Journal Name:
- Journal of advanced technological education
- ISSN:
- 2832-9627
- Subject(s) / Keyword(s):
- p53 mutations neoantigens cancer CEDAR bioinfomatics immunotherapeutic Open Access Resources
- Format(s):
- Medium: X
- Right(s):
- Creative Commons Attribution 4.0 International
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract TP53 tumor suppressor gene occur in >80% of the triple-negative or basal-like breast cancer. To test whether neomorphic functions of specificTP53 missense mutations contribute to phenotypic heterogeneity, we characterized phenotypes of non-transformed MCF10A-derived cell lines expressing the ten most common missense mutant p53 proteins and observed a wide spectrum of phenotypic changes in cell survival, resistance to apoptosis and anoikis, cell migration, invasion and 3D mammosphere architecture. The p53 mutants R248W, R273C, R248Q, and Y220C are the most aggressive while G245S and Y234C are the least, which correlates with survival rates of basal-like breast cancer patients. Interestingly, a crucial amino acid difference at one position—R273C vs. R273H—has drastic changes on cellular phenotype. RNA-Seq and ChIP-Seq analyses show distinct DNA binding properties of different p53 mutants, yielding heterogeneous transcriptomics profiles, and MD simulation provided structural basis of differential DNA binding of different p53 mutants. Integrative statistical and machine-learning-based pathway analysis on gene expression profiles with phenotype vectors across the mutant cell lines identifies quantitative association of multiple pathways including the Hippo/YAP/TAZ pathway with phenotypic aggressiveness. Further, comparative analyses of large transcriptomics datasets on breast cancer cell lines and tumors suggest that dysregulation of the Hippo/YAP/TAZ pathway plays a key role in driving the cellular phenotypes towards basal-like in the presence of more aggressive p53 mutants. Overall, our study describes distinct gain-of-function impacts on protein functions, transcriptional profiles, and cellular behaviors of different p53 missense mutants, which contribute to clinical phenotypic heterogeneity of triple-negative breast tumors. -
Abstract Neoantigens induced by random mutations and specific to an individual's cancer are the most important tumor antigens recognized by T cells. Among immunologically “cold” tumors, limited recognition of tumor neoantigens results in the absence of a de novo antitumor immune response. These “cold” tumors present a clinical challenge as they are poorly responsive to most immunotherapies, including immune checkpoint inhibitors (ICIs). Radiation therapy (RT) can enhance immune recognition of “cold” tumors, resulting in a more diversified antitumor T‐cell response, yet RT alone rarely results in a systemic antitumor immune response. Therefore, a multifunctional bacterial membrane‐coated nanoparticle (BNP) composed of an immune activating PC7A/CpG polyplex core coated with bacterial membrane and imide groups to enhance antigen retrieval is developed. This BNP can capture cancer neoantigens following RT, enhance their uptake in dendritic cells (DCs), and facilitate their cross presentation to stimulate an antitumor T‐cell response. In mice bearing syngeneic melanoma or neuroblastoma, treatment with BNP+RT results in activation of DCs and effector T cells, marked tumor regression, and tumor‐specific antitumor immune memory. This BNP facilitates in situ immune recognition of a radiated tumor, enabling a novel personalized approach to cancer immunotherapy using off‐the‐shelf therapeutics.
-
Although immune checkpoint inhibitors (ICIs), such as anti–programmed cell death protein–1 (PD-1), can deliver durable antitumor effects, most patients with cancer fail to respond. Recent studies suggest that ICI efficacy correlates with a higher load of tumor-specific neoantigens and development of vitiligo in patients with melanoma. Here, we report that patients with low melanoma neoantigen burdens who responded to ICI had tumors with higher expression of pigmentation-related genes. Moreover, expansion of peripheral blood CD8+T cell populations specific for melanocyte antigens was observed only in patients who responded to anti–PD-1 therapy, suggesting that ICI can promote breakdown of tolerance toward tumor-lineage self-antigens. In a mouse model of poorly immunogenic melanomas, spreading of epitope recognition toward wild-type melanocyte antigens was associated with markedly improved anti–PD-1 efficacy in two independent approaches: introduction of neoantigens by ultraviolet (UV) B radiation mutagenesis or the therapeutic combination of ablative fractional photothermolysis plus imiquimod. Complete responses against UV mutation-bearing tumors after anti–PD-1 resulted in protection from subsequent engraftment of melanomas lacking any shared neoantigens, as well as pancreatic adenocarcinomas forcibly overexpressing melanocyte-lineage antigens. Our data demonstrate that somatic mutations are sufficient to provoke strong antitumor responses after checkpoint blockade, but long-term responses are not restricted to these putative neoantigens. Epitope spreading toward T cell recognition of wild-type tumor-lineage self-antigens represents a common pathway for successful response to ICI, which can be evoked in neoantigen-deficient tumors by combination therapy with ablative fractional photothermolysis and imiquimod.
-
Neoantigens are derived from tumor-specific somatic mutations. Neoantigen-based synthesized peptides have been under clinical investigation to boost cancer immunotherapy efficacy. The promising results prompt us to further elucidate the effect of neoantigen expression on patient survival in breast cancer. We applied Kaplan–Meier survival and multivariable Cox regression models to evaluate the effect of neoantigen expression and its interaction with T-cell activation on overall survival in a cohort of 729 breast cancer patients. Pearson’s chi-squared tests were used to assess the relationships between neoantigen expression and clinical pathological variables. Spearman correlation analysis was conducted to identify correlations between neoantigen expression, mutation load, and DNA repair gene expression. ERCC1, XPA, and XPC were negatively associated with neoantigen expression, while BLM, BRCA2, MSH2, XRCC2, RAD51, CHEK1, and CHEK2 were positively associated with neoantigen expression. Based on the multivariable Cox proportional hazard model, patients with a high level of neoantigen expression and activated T-cell status showed improved overall survival. Similarly, in the T-cell exhaustion and progesterone receptor (PR) positive subgroups, patients with a high level of neoantigen expression showed prolonged survival. In contrast, there was no significant difference in the T-cell activation and PR negative subgroups. In conclusion, neoantigens may serve as immunogenic agents for immunotherapy in breast cancer.more » « less
-
Abstract BACKGROUND Despite widespread interest in next-generation sequencing (NGS), the adoption of personalized clinical genomics and mutation profiling of cancer specimens is lagging, in part because of technical limitations. Tumors are genetically heterogeneous and often contain normal/stromal cells, features that lead to low-abundance somatic mutations that generate ambiguous results or reside below NGS detection limits, thus hindering the clinical sensitivity/specificity standards of mutation calling. We applied COLD-PCR (coamplification at lower denaturation temperature PCR), a PCR methodology that selectively enriches variants, to improve the detection of unknown mutations before NGS-based amplicon resequencing.
METHODS We used both COLD-PCR and conventional PCR (for comparison) to amplify serially diluted mutation-containing cell-line DNA diluted into wild-type DNA, as well as DNA from lung adenocarcinoma and colorectal cancer samples. After amplification of TP53 (tumor protein p53), KRAS (v-Ki-ras2 Kirsten rat sarcoma viral oncogene homolog), IDH1 [isocitrate dehydrogenase 1 (NADP+), soluble], and EGFR (epidermal growth factor receptor) gene regions, PCR products were pooled for library preparation, bar-coded, and sequenced on the Illumina HiSeq 2000.
RESULTS In agreement with recent findings, sequencing errors by conventional targeted-amplicon approaches dictated a mutation-detection limit of approximately 1%–2%. Conversely, COLD-PCR amplicons enriched mutations above the error-related noise, enabling reliable identification of mutation abundances of approximately 0.04%. Sequencing depth was not a large factor in the identification of COLD-PCR–enriched mutations. For the clinical samples, several missense mutations were not called with conventional amplicons, yet they were clearly detectable with COLD-PCR amplicons. Tumor heterogeneity for the TP53 gene was apparent.
CONCLUSIONS As cancer care shifts toward personalized intervention based on each patient's unique genetic abnormalities and tumor genome, we anticipate that COLD-PCR combined with NGS will elucidate the role of mutations in tumor progression, enabling NGS-based analysis of diverse clinical specimens within clinical practice.