skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Structure and Mechanical Property of Highly Branched Polyethylene Thermoplastic Elastomers
Highly branched polyethylene (PE) thermoplastic elastomer (TPE)s can be synthesized using Brookhart-type α-diimine nickel and palladium catalysts, which show a range of branching number and identity. In this work, we aim at elucidating the structure-property relationship of various PE-TPEs through solution-state and solid-state 13C NMR spectroscopy and mechanical tensile testing. By applying solid-state NMR spectroscopy, DSC, and XRD, it was revealed that small degrees of crystallinity (< 5%) yields polyethylenes that are sufficiently reinforced to exhibit TPE behavior. Across PE samples with similar branching numbers, we relate the effects of branch identity, crystallinity, and molecular weight on the tunable mechanical properties. The structure-property relationship of the PE-TPEs will be discussed.  more » « less
Award ID(s):
2004393
PAR ID:
10537931
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
American Physical Society
Date Published:
Format(s):
Medium: X
Location:
Minneapolis
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract With over 6 million tons produced annually, thermoplastic elastomers (TPEs) have become ubiquitous in modern society, due to their unique combination of elasticity, toughness, and reprocessability. Nevertheless, industrial TPEs display a tradeoff between softness and strength, along with low upper service temperatures, typically ≤100 °C. This limits their utility, such as in bio‐interfacial applications where supersoft deformation is required in tandem with strength, in addition to applications that require thermal stability (e.g., encapsulation of electronics, seals/joints for aeronautics, protective clothing for firefighting, and biomedical devices that can be subjected to steam sterilization). Thus, combining softness, strength, and high thermal resistance into a single versatile TPE has remained an unmet opportunity. Through de novo design and synthesis of novel norbornene‐basedABAtriblock copolymers, this gap is filled. Ring‐opening metathesis polymerization is employed to prepare TPEs with an unprecedented combination of properties, including skin‐like moduli (<100 kPa), strength competitive with commercial TPEs (>5 MPa), and upper service temperatures akin to high‐performance plastics (≈260 °C). Furthermore, the materials are elastic, tough, reprocessable, and shelf stable (≥2 months) without incorporation of plasticizer. Structure–property relationships identified herein inform development of next‐generation TPEs that are both biologically soft yet thermomechanically durable. 
    more » « less
  2. Abstract Thermoplastic elastomers (TPEs) are nanostructured, melt‐processable, elastomeric block copolymers. When TPEs that form cylindrical or lamellar nanostructures are macroscopically oriented, their material properties can exhibit several orders of magnitude of anisotropy. Here it is demonstrated that the flows applied during the 3D printing of a cylinder‐forming TPE enable hierarchical control over material nanostructure and function. It is demonstrated that 3D printing allows for control over the extent of nanostructural and mechanical anisotropy and that thermal annealing of 3D printed structures leads to highly anisotropic properties (up to 85 × anisotropic tensile modulus). This approach is leveraged to print functional soft 3D architectures with tunable local and macroscopic mechanical responses. Further, these printed TPEs intrinsically achieve melt‐reprocessability over multiple cycles, reprogrammability, and robust self‐healing via a brief period of thermal annealing, enabling facile fabrication of highly tunable, robust, and recyclable soft architectures. 
    more » « less
  3. null (Ed.)
    Plastic production continually increases its share of global oil consumption. Thermoplastic elastomers (TPEs) are a necessary component of many industries, from automotive and construction to healthcare and medical devices. To reduce the environmental burden of TPE production on the world, we developed two new ABA triblock copolymers synthesized through cationic reversable addition–fragmentation chain transfer (RAFT) polymerization from renewable monomers. Using poly(isobutyl vinyl ether) (PIBVE) as the soft block and either poly( p -methoxystyrene) (PMOS) or poly(2,3-dihydrofuran) (PDHF) as the hard blocks, we produced triblock copolymers with varying volume fractions and characterized their material properties. PDHF-PIBVE-PDHF is sourced almost entirely from simple alcohols and exhibits mechanical properties comparable to those of commercial TPEs. This effort demonstrates the utility of cationic RAFT for the production of sustainable TPEs. 
    more » « less
  4. Presented here is the design, synthesis, and study of a variety of novel hydrogen-bonding-capable π-conjugatedN-heteroacenes, 1,4-dihydropyrazino[2,3-b]quinoxaline-2,3-diones (DPQDs). The DPQDs were accessed from the corresponding weakly hydrogen-bonding dicyanopyrazinoquinoxaline (DCPQ) suspensions with excess potassium hydroxide, resulting in moderate to good yields. Both families of compounds were analyzed by UV–vis and NMR spectroscopy, where the consequences of hydrogen bonding capability could be assessed through the structure–property studies. Conversion of the DCPQs into hydrogen-bonding capable DPQDs results in modulation of frontier MO energies, higher molar extinction coefficients, enhanced crystallinity, and on-average higher thermal stability (where in some cases the 5% weight loss temperature is increased by up to 100 °C). Single crystal X-ray diffraction data could be obtained for three DPQDs. One reveals pairwise hydrogen bonding in the solid state as well as a herringbone packing arrangement rendering it a promising candidate for additional studies in the context of organic optoelectronic devices. 
    more » « less
  5. Cui, Dongmei (Ed.)
    Branching number, pattern, and distribution of polyethylene (PE) significantly affect the crystalline structures at hierarchical length scales and thus dominate physical properties. Highly branched (HB) PE with over 100 branches per 1000 carbons (100b/1kC) can be synthesized from a sole ethylene feedstock using α-diimine nickel catalysts but results in complex 13C solution-state NMR spectra. In this study, we assign numerous 13C peaks that were unassigned in HBPEs synthesized via three nickel α-diimine catalysts. By application of an additive rule of 13C chemical shifts, several new microstructures are identified. The results successfully reveal new branching microstructures, including (i) the configuration of paired branches, (ii) continual paired branches, and (iii) methylated branch ends. Based on these new assignments, several insights into the chain-walking mechanisms of HBPEs are discussed. 
    more » « less