skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Leaderless consensus decision-making determines cooperative transport direction in weaver ants
Animal groups need to achieve and maintain consensus to minimize conflict among individuals and prevent group fragmentation. An excellent example of a consensus challenge is cooperative transport, where multiple individuals cooperate to move a large item together. This behaviour, regularly displayed by ants and humans only, requires individuals to agree on which direction to move in. Unlike humans, ants cannot use verbal communication but most likely rely on private information and/or mechanical forces sensed through the carried item to coordinate their behaviour. Here, we investigated how groups of weaver ants achieve consensus during cooperative transport using a tethered-object protocol, where ants had to transport a prey item that was tethered in place with a thin string. This protocol allows the decoupling of the movement of informed ants from that of uninformed individuals. We showed that weaver ants pool together the opinions of all group members to increase their navigational accuracy. We confirmed this result using a symmetry-breaking task, in which we challenged ants with navigating an open-ended corridor. Weaver ants are the first reported ant species to use a ‘wisdom-of-the-crowd’ strategy for cooperative transport, demonstrating that consensus mechanisms may differ according to the ecology of each species.  more » « less
Award ID(s):
2222418 1955210
PAR ID:
10538004
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Royal Society
Date Published:
Journal Name:
Proceedings of the Royal Society B: Biological Sciences
Volume:
291
Issue:
2028
ISSN:
0962-8452
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Animals are often faced with time-critical decisions without prior information about their actions’ outcomes. In such scenarios, individuals budget their investment into the task to cut their losses in case of an adverse outcome. In animal groups, this may be challenging because group members can only access local information, and consensus can only be achieved through distributed interactions among individuals. Here, we combined experimental analyses with theoretical modeling to investigate how groups modulate their investment into tasks in uncertain conditions. Workers of the arboreal weaver ant Oecophylla smaragdina form three-dimensional chains using their own bodies to bridge vertical gaps between existing trails and new areas to explore. The cost of a chain increases with its length because ants participating in the structure are prevented from performing other tasks. The payoffs of chain formation, however, remain unknown to the ants until the chain is complete and they can explore the new area. We demonstrate that weaver ants cap their investment into chains, and do not form complete chains when the gap is taller than 90 mm. We show that individual ants budget the time they spend in chains depending on their distance to the ground, and propose a distance-based model of chain formation that explains the emergence of this tradeoff without the need to invoke complex cognition. Our study provides insights into the proximate mechanisms that lead individuals to engage (or not) in collective actions and furthers our knowledge of how decentralized groups make adaptive decisions in uncertain conditions. 
    more » « less
  2. Eusociality represents an extreme form of social behavior characterized by a reproductive division of labor. Eusociality necessarily evolved through kin selection, which requires interactions among related individuals. However, many eusocial taxa also show cooperation between non-kin groups, challenging the idea that cooperative actions should only occur among relatives. This review explores the causes and consequences of non-kin cooperation in ants. Ants display a diversity of behaviors that lead to non-kin cooperation within and between species. These interactions occur among both reproductive and non-reproductive individuals. The proximate and ultimate mechanisms leading to non-kin cooperative interactions differ substantially depending on the biotic and abiotic environment. We end this review with directions for future research and suggest that the investigation of non-kin cooperative actions provides insight into processes leading to social evolution. 
    more » « less
  3. Social change in any society entails changes in both behaviours and institutions. We model a group-structured society in which the transmission of individual behaviour occurs in parallel with the selection of group-level institutions. We consider a cooperative behaviour that generates collective benefits for groups but does not spread between individuals on its own. Groups exhibit institutions that increase the diffusion of the behaviour within the group, but also incur a group cost. Groups adopt institutions in proportion to their fitness. Finally, the behaviour may also spread globally. We find that behaviour and institutions can be mutually reinforcing. But the model also generates behavioural source-sink dynamics when behaviour generated in institutionalized groups spreads to non-institutionalized groups and boosts their fitness. Consequently, the global diffusion of group-beneficial behaviour creates a pattern of institutional free-riding that limits the evolution of group-beneficial institutions. Our model suggests that, in a group-structured society, large-scale beneficial social change can be best achieved when the relevant behaviour and institutions remain correlated. 
    more » « less
  4. Abstract Collective motion, that is the coordinated spatial and temporal organisation of individuals, is a core element in the study of collective animal behaviour. The self‐organised properties of how a group moves influence its various behavioural and ecological processes, such as predator–prey dynamics, social foraging and migration. However, little is known about the inter‐ and intra‐specific variation in collective motion. Despite the significant advancement in high‐resolution tracking of multiple individuals within groups, providing collective motion data for animals in the laboratory and the field, a framework to perform quantitative comparisons across species and contexts is lacking.Here, we present theswaRmversepackage. Building on two existing R packages,trackdfandswaRm,swaRmverseenables the identification and analysis of collective motion ‘events’, as presented in Papadopoulou et al. (2023), creating a unit of comparison across datasets. We describe the package's structure and showcase its functionality using existing datasets from several species and simulated trajectories from an agent‐based model.From positional time‐series data for multiple individuals (x‐y‐t‐id),swaRmverseidentifies events of collective motion based on the distribution of polarisation and group speed. For each event, a suite of validated biologically meaningful metrics are calculated, and events are placed into a ‘swarm space’ through dimensional reduction techniques.Our package provides the first automated pipeline enabling the analysis of data on collective behaviour. The package allows the calculation and use of complex metrics for users without a strong quantitative background and will promote communication and data‐sharing across disciplines, standardising the quantification of collective motion across species and promoting comparative investigations. 
    more » « less
  5. Social groups such as schools of fish or flocks of birds display collective dynamics that can be modulated by group leaders, which facilitate decision-making toward a consensus state beneficial to the entire group. For instance, leaders could alert the group about attacking predators or the presence of food sources. Motivated by biological insight on social groups, we examine a stochastic leader–follower consensus problem where information sharing among agents is affected by perceptual constraints and each individual has a different tendency to form social connections. Leveraging tools from stochastic stability and eigenvalue perturbation theories, we study the consensus protocol in a mean-square sense, offering necessary-and-sufficient conditions for asymptotic stability and closed-form estimates of the convergence rate. Surprisingly, the prediction of our minimalistic model share similarities with observed traits of animal and human groups. Our analysis anticipates the counterintuitive result that heterogeneity can be beneficial to group decision-making by improving the convergence rate of the consensus protocol. This observation finds support in theoretical and empirical studies on social insects such as spider or honeybee colonies, as well as human teams, where inter-individual variability enhances the group performance. 
    more » « less