Animal groups need to achieve and maintain consensus to minimize conflict among individuals and prevent group fragmentation. An excellent example of a consensus challenge is cooperative transport, where multiple individuals cooperate to move a large item together. This behaviour, regularly displayed by ants and humans only, requires individuals to agree on which direction to move in. Unlike humans, ants cannot use verbal communication but most likely rely on private information and/or mechanical forces sensed through the carried item to coordinate their behaviour. Here, we investigated how groups of weaver ants achieve consensus during cooperative transport using a tethered-object protocol, where ants had to transport a prey item that was tethered in place with a thin string. This protocol allows the decoupling of the movement of informed ants from that of uninformed individuals. We showed that weaver ants pool together the opinions of all group members to increase their navigational accuracy. We confirmed this result using a symmetry-breaking task, in which we challenged ants with navigating an open-ended corridor. Weaver ants are the first reported ant species to use a ‘wisdom-of-the-crowd’ strategy for cooperative transport, demonstrating that consensus mechanisms may differ according to the ecology of each species. 
                        more » 
                        « less   
                    
                            
                            A simple mechanism for collective decision-making in the absence of payoff information
                        
                    
    
            Animals are often faced with time-critical decisions without prior information about their actions’ outcomes. In such scenarios, individuals budget their investment into the task to cut their losses in case of an adverse outcome. In animal groups, this may be challenging because group members can only access local information, and consensus can only be achieved through distributed interactions among individuals. Here, we combined experimental analyses with theoretical modeling to investigate how groups modulate their investment into tasks in uncertain conditions. Workers of the arboreal weaver ant Oecophylla smaragdina form three-dimensional chains using their own bodies to bridge vertical gaps between existing trails and new areas to explore. The cost of a chain increases with its length because ants participating in the structure are prevented from performing other tasks. The payoffs of chain formation, however, remain unknown to the ants until the chain is complete and they can explore the new area. We demonstrate that weaver ants cap their investment into chains, and do not form complete chains when the gap is taller than 90 mm. We show that individual ants budget the time they spend in chains depending on their distance to the ground, and propose a distance-based model of chain formation that explains the emergence of this tradeoff without the need to invoke complex cognition. Our study provides insights into the proximate mechanisms that lead individuals to engage (or not) in collective actions and furthers our knowledge of how decentralized groups make adaptive decisions in uncertain conditions. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 1955210
- PAR ID:
- 10436435
- Date Published:
- Journal Name:
- Proceedings of the National Academy of Sciences
- Volume:
- 120
- Issue:
- 29
- ISSN:
- 0027-8424
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Eusociality represents an extreme form of social behavior characterized by a reproductive division of labor. Eusociality necessarily evolved through kin selection, which requires interactions among related individuals. However, many eusocial taxa also show cooperation between non-kin groups, challenging the idea that cooperative actions should only occur among relatives. This review explores the causes and consequences of non-kin cooperation in ants. Ants display a diversity of behaviors that lead to non-kin cooperation within and between species. These interactions occur among both reproductive and non-reproductive individuals. The proximate and ultimate mechanisms leading to non-kin cooperative interactions differ substantially depending on the biotic and abiotic environment. We end this review with directions for future research and suggest that the investigation of non-kin cooperative actions provides insight into processes leading to social evolution.more » « less
- 
            Ants are millimetres in scale yet collectively create metre-scale nests in diverse substrates. To discover principles by which ant collectives self-organize to excavate crowded, narrow tunnels, we studied incipient excavation in small groups of fire ants in quasi-two-dimensional arenas. Excavation rates displayed three stages: initially excavation occurred at a constant rate, followed by a rapid decay, and finally a slower decay scaling in time as t −1/2 . We used a cellular automata model to understand such scaling and motivate how rate modulation emerges without global control. In the model, ants estimated their collision frequency with other ants, but otherwise did not communicate. To capture early excavation rates, we introduced the concept of ‘agitation’—a tendency of individuals to avoid rest if collisions are frequent. The model reproduced the observed multi-stage excavation dynamics; analysis revealed how parameters affected features of multi-stage progression. Moreover, a scaling argument without ant–ant interactions captures tunnel growth power-law at long times. Our study demonstrates how individual ants may use local collisional cues to achieve functional global self-organization. Such contact-based decisions could be leveraged by other living and non-living collectives to perform tasks in confined and crowded environments.more » « less
- 
            Understanding the mechanisms by which information and misinformation spread through groups of individual actors is essential to the prediction of phenomena ranging from coordinated group behaviors to misinformation epidemics. Transmission of information through groups depends on the rules that individuals use to transform the perceived actions of others into their own behaviors. Because it is often not possible to directly infer decision-making strategies in situ, most studies of behavioral spread assume that individuals make decisions by pooling or averaging the actions or behavioral states of neighbors. However, whether individuals may instead adopt more sophisticated strategies that exploit socially transmitted information, while remaining robust to misinformation, is unknown. Here, we study the relationship between individual decision-making and misinformation spread in groups of wild coral reef fish, where misinformation occurs in the form of false alarms that can spread contagiously through groups. Using automated visual field reconstruction of wild animals, we infer the precise sequences of socially transmitted visual stimuli perceived by individuals during decision-making. Our analysis reveals a feature of decision-making essential for controlling misinformation spread: dynamic adjustments in sensitivity to socially transmitted cues. This form of dynamic gain control can be achieved by a simple and biologically widespread decision-making circuit, and it renders individual behavior robust to natural fluctuations in misinformation exposure.more » « less
- 
            Alistarh, Dan (Ed.)Local interactions of uncoordinated individuals produce the collective behaviors of many biological systems, inspiring much of the current research in programmable matter. A striking example is the spontaneous assembly of fire ants into "bridges" comprising their own bodies to traverse obstacles and reach sources of food. Experiments and simulations suggest that, remarkably, these ants always form one bridge - instead of multiple, competing bridges - despite a lack of central coordination. We argue that the reliable formation of a single bridge does not require sophistication on behalf of the individuals by provably reproducing this behavior in a self-organizing particle system. We show that the formation of a single bridge by the particles is a statistical inevitability of their preferences to move in a particular direction, such as toward a food source, and their preference for more neighbors. Two parameters, η and β, reflect the strengths of these preferences and determine the Gibbs stationary measure of the corresponding particle system’s Markov chain dynamics. We show that a single bridge almost certainly forms when η and β are sufficiently large. Our proof introduces an auxiliary Markov chain, called an "occupancy chain," that captures only the significant, global changes to the system. Through the occupancy chain, we abstract away information about the motion of individual particles, but we gain a more direct means of analyzing their collective behavior. Such abstractions provide a promising new direction for understanding many other systems of programmable matter.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    