A series of multi-doped yttrium pyrosilicate (YPS) nanoparticles were synthesized using a high temperature multi-composite reactor, and used to explore the radioluminescent properties that have potential for biological applications. The luminescent activators explored in this work were cerium, terbium, and europium. A series of mono-doped YPS nanoparticles were synthesized that have optical and X-ray luminescent properties that span the entire visible spectrum. Energy transfer experiments were investiagted to increase the photo- and X-ray luminescence of terbium and europium. Cerium was used as a sensitizer for terbium where X-ray luminescence was enhanced. Similar results were also obtained using cerium as a sensitizer and terbium as an energy bridge for europium. By leveraging different energy transfer mechanisms X-ray luminescence can be enhanced for YPS nanoparticles.
more »
« less
Dynamic Luminescence of Lead-Doped Calcium Zinc Germanate Clinopyroxene for Multimode Anticounterfeiting
Anticounterfeiting plays an essential role in authenticating genuine documents and combating forged products. To further advance the anticounterfeiting technology, there is a strong demand to design new functional materials with unique properties that will be appropriate for making multimode complex security labels. Recently, dynamic security labels have emerged as a new type of advanced anticounterfeiting method as they can hold a much higher security level than the traditional static ones. In this work, we report that calcium zinc germanate (CZGO) clinopyroxenes doped with lead ions have several interesting optical properties, such as dynamic fluorescence, long persistent luminescence, and photochromism. We find that the concentration of lead dopants can significantly impact the reaction kinetics as well as the crystallinity and luminescence properties of CZGO phosphors. By fully utilizing these unique properties, we have successfully fabricated several security labels with multilevel information encoding and dynamic optical performance. The combination of multimode and dynamic luminescence makes these labels extremely challenging to illegally duplicate. With further optimization, this lead-doped CZGO clinopyroxene can be well-integrated into modern anticounterfeiting techniques that will generate highly secure anticounterfeiting labels to combat fake products.
more »
« less
- Award ID(s):
- 1828288
- PAR ID:
- 10538043
- Publisher / Repository:
- American Chemical Society
- Date Published:
- Journal Name:
- ACS Applied Materials & Interfaces
- Volume:
- 16
- Issue:
- 13
- ISSN:
- 1944-8244
- Page Range / eLocation ID:
- 16418 to 16426
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Dye-doped nanoparticles have been investigated as bright, luminescent labels for super-resolution microscopy via localization methods. One key factor in super-resolution is the size of the luminescent label, which in some cases results in a frame shift between the label target and the label itself. Ag@SiO 2 core–shell nanoparticles, doped with organic fluorophores, have shown promise as super-resolution labels. One key aspect of these nanoparticles is that they blink under certain conditions, allowing super-resolution localization with a single excitation source in aqueous solution. In this work, we investigated the effects of both the Ag core and the silica (SiO 2 ) shell on the self-blinking properties of these nanoparticles. Both core size and shell thickness were manipulated by altering the reaction time to determine core and shell effects on photoblinking. Size and shell thickness were investigated individually under both dry and hydrated conditions and were then doped with a 1 mM solution of Rhodamine 110 for analysis. We observed that the cores themselves are weakly luminescent and are responsible for the blinking observed in the fully-synthesized metal-enhanced fluorescence nanoparticles. There was no statistically significant difference in photoblinking behavior—both intensity and duty cycle—with decreasing core size. This observation was used to synthesize smaller nanoparticles ranging from approximately 93 nm to 110 nm as measured using dynamic light scattering. The blinking particles were localized via super-resolution microscopy and show single particle self-blinking behavior. As the core size did not impact blinking performance or intensity, the nanoparticles can instead be tuned for optimal size without sacrificing luminescence properties.more » « less
-
null (Ed.)Ultrasmall metal nanoparticles (below 2.2 nm core diameter) start to show discrete electronic energy levels due to strong quantum confinement effects and thus behave much like molecules. The size and structure dependent quantization induces a plethora of new phenomena, including multi-band optical absorption, enhanced luminescence, single-electron magnetism, and catalytic reactivity. The exploration of such new properties is largely built on the success in unveiling the crystallographic structures of atomically precise nanoclusters (typically protected by ligands, formulated as M n L m q , where M = metal, L = Ligand, and q = charge). Correlation between the atomic structures of nanoclusters and their properties has further enabled atomic-precision engineering toward materials design. In this frontier article, we illustrate several aspects of the precise engineering of gold nanoclusters, such as the single-atom size augmenting, single-atom dislodging and doping, precise surface modification, and single-electron control for magnetism. Such precise engineering involves the nanocluster's geometric structure, surface chemistry, and electronic properties, and future endeavors will lead to new materials design rules for structure–function correlations and largely boost the applications of metal nanoclusters in optics, catalysis, magnetism, and other fields. Following the illustrations of atomic-precision engineering, we have also put forth some perspectives. We hope this frontier article will stimulate research interest in atomic-level engineering of nanoclusters.more » « less
-
A new niobium-doped inorganic scintillating oxyfluoride, Rb4Ge5O9F6:Nb, was synthesized in single crystal form by high-temperature flux growth. The host structure, Rb4Ge5O9F6, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.98430(10) Å, b = 11.7265(2) Å, and c = 19.2732(3) Å, consisting of germanium oxyfluoride layers made up of Ge3O9 units connected by GeO3F3 octahedra. In its pure form, Rb4Ge5O9F6 shows neither luminescence nor scintillation but when doped with niobium, Rb4Ge5O9F6:Nb exhibits bright blue luminescence and scintillation. The isostructural doped structure, Rb4Ge5O9F6:Nb, crystallizes in the orthorhombic space group Pbcn with lattice parameters a = 6.9960(3) Å, b = 11.7464(6) Å, and c = 19.3341(9) Å. X-ray absorption near edge structure (XANES) and extended X-ray absorption fine structure (EXAFS) measurements suggest that the niobium is located in an octahedral coordination environment. Optical measurements inform us that the niobium dopant acts as the activator. The synthesis, structure, and optical properties are reported, including radioluminescence (RL) measurements under X-ray irradiation.more » « less
-
Recent advances in the field of two-dimensional (2D) materials have led to new electronic and photonic devices enabled by their unique properties at atomic thickness. Structuring 2D materials into desired patterns on substrates is often an essential and foremost step for the optimum performance of the functional devices. In this regard, optical patterning of 2D materials has received enormous interest due to its advantages of high-throughput, site-specific, and on-demand fabrication. Recent years have witnessed scientific reports of a variety of optical techniques applicable to patterning 2D materials. In this minireview, we present the state-of-the-art optical patterning of 2D materials, including laser thinning, doping, phase transition, oxidation, and ablation. Several applications based on optically patterned 2D materials will be discussed as well. With further developments, optical patterning is expected to hold the key in pushing the frontiers of manufacturing and applications of 2D materials.more » « less
An official website of the United States government

