skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Virus-Based Separation of Rare Earth Elements
The utilization of biomaterials for the separation of rare earth elements (REEs) has attracted considerable interest due to their inherent advantages, including diverse molecular structures for selective binding and the use of eco-friendly materials for sustainable systems. We present a pioneering methodology for developing a safe virus to selectively bind REEs and facilitate their release through pH modulation. We engineered the major coat protein of M13 bacteriophage (phage) to incorporate a lanthanidebinding peptide. The engineered lanthanide-binding phage (LBPh), presenting ∼3300 copies of the peptide, serves as an effective biological template for REE separation. Our findings demonstrate the LBPh’s preferential binding for heavy REEs over light REEs. Moreover, the LBPh exhibits remarkable robustness with excellent recyclability and stability across multiple cycles of separations. This study underscores the potential of genetically integrating virus templates with selective binding motifs for REE separation, offering a promising avenue for environmentally friendly and energy-efficient separation processes.  more » « less
Award ID(s):
2223730
PAR ID:
10538123
Author(s) / Creator(s):
; ; ;
Corporate Creator(s):
Editor(s):
na
Publisher / Repository:
Nano Letters
Date Published:
Journal Name:
Nano Letters
Volume:
24
Issue:
32
ISSN:
1530-6984
Page Range / eLocation ID:
9946 to 9952
Subject(s) / Keyword(s):
Rare earth elements, lanthanide-binding phage, biological template, sustainable system
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Rare earth elements (REEs) are critical materials to modern technologies. They are obtained by selective separation from mining feedstocks consisting of mixtures of their trivalent cation. We are developing an all-aqueous, bioinspired, interfacial separation using peptides as amphiphilic molecular extractants. Lanthanide binding tags (LBTs) are amphiphilic peptide sequences based on the EF-hand metal binding loops of calcium-binding proteins which complex selectively REEs. We study LBTs optimized for coordination to Tb3+using luminescence spectroscopy, surface tensiometry, X-ray reflectivity, and X-ray fluorescence near total reflection, and find that these LBTs capture Tb3+in bulk and adsorb the complex to the interface. Molecular dynamics show that the binding pocket remains intact upon adsorption. We find that, if the net negative charge on the peptide results in a negatively charged complex, excess cations are recruited to the interface by nonselective Coulombic interactions that compromise selective REE capture. If, however, the net negative charge on the peptide is −3, resulting in a neutral complex, a 1:1 surface ratio of cation to peptide is achieved. Surface adsorption of the neutral peptide complexes from an equimolar mixture of Tb3+and La3+demonstrates a switchable platform dictated by bulk and interfacial effects. The adsorption layer becomes enriched in the favored Tb3+when the bulk peptide is saturated, but selective to La3+for undersaturation due to a higher surface activity of the La3+complex. 
    more » « less
  2. Rare earth elements (REEs) are a vital part of many technologies with particular importance to the renewable energy sector and there is a pressing need for environmentally friendly and sustainable processes to recover and recycle them from waste streams. Functionalized polymer scaffolds are a promising means to recover REEs due to the ability to engineer both transport properties of the porous material and specificity for target ions. In this work, REE adsorbing polymer scaffolds were synthesized by first introducing poly(glycidyl methacrylate) (GMA) brushes onto porous polyvinylidene fluoride (PVDF) surface through activator generated electron transfer atom transfer radical polymerization (AGET ATRP). Azide moieties were then introduced through a ring opening reaction of GMA. Subsequently, REE-binding peptides were conjugated to the polymer surface through copper catalyzed azide alkyne cycloaddition (CuAAC) click chemistry. The presence of GMA, azide, and peptide was confirmed through Fourier transform infrared spectroscopy. Polymer scaffolds functionalized with the REE-binding peptide bound cerium, while polymer scaffolds functionalized with a scrambled control peptide bound significantly less cerium. Importantly, this study shows that the REE binding peptide retains its functionality when bound to a polymer surface. The conjugation strategy employed in this work can be used to introduce peptides onto other polymeric surfaces and tailor surface specificity for a wide variety of ions and small molecules. 
    more » « less
  3. Development of effective vaccines against coronavirus disease 2019 (COVID-19) is a global imperative. Rapid immunization of the entire human population against a widespread, continually evolving, and highly pathogenic virus is an unprecedented challenge, and different vaccine approaches are being pursued. Engineered filamentous bacteriophage (phage) particles have unique potential in vaccine development due to their inherent immunogenicity, genetic plasticity, stability, cost-effectiveness for large-scale production, and proven safety profile in humans. Herein we report the development and initial evaluation of two targeted phage-based vaccination approaches against SARS-CoV-2: dual ligand peptide-targeted phage and adeno-associated virus/phage (AAVP) particles. For peptide-targeted phage, we performed structure-guided antigen design to select six solvent-exposed epitopes of the SARS-CoV-2 spike (S) protein. One of these epitopes displayed on the major capsid protein pVIII of phage induced a specific and sustained humoral response when injected in mice. These phage were further engineered to simultaneously display the peptide CAKSMGDIVC on the minor capsid protein pIII to enable their transport from the lung epithelium into the systemic circulation. Aerosolization of these “dual-display” phage into the lungs of mice generated a systemic and specific antibody response. In the second approach, targeted AAVP particles were engineered to deliver the entire S protein gene under the control of a constitutive CMV promoter. This induced tissue-specific transgene expression, stimulating a systemic S protein-specific antibody response in mice. With these proof-of-concept preclinical experiments, we show that both targeted phage- and AAVP-based particles serve as robust yet versatile platforms that can promptly yield COVID-19 vaccine prototypes for translational development. 
    more » « less
  4. Abstract The significance of easily detecting rare earth elements (REEs) has increased due to the growing demand for REEs. Addressing this need, we present an innovative electrochemical biosensor, focusing on cerium as a model REE. This biosensor utilizes a modified EF‐hand loop peptide sequence, incorporating cysteine for covalent attachment to a gold working electrode and tyrosine as an electrochemically active amino acid. The sensor was designed such that binding to cerium induces a conformational change in the peptide, affecting tyrosine's proximity to the electrode surface, modulating the current. A calibration curve was generated from cyclic voltammetry current peaks at ~0.55–0.65 V versus a silver pseudo‐reference electrode, with cerium concentrations ranging from 0 to 67 μM in artificial urine. The sensor exhibited a biologically relevant limit of detection of 35 μM and a sensitivity of −0.0024 ± 0.002 (μA μM)−1. These findings offer insights into designing peptide sequences for electrochemical biosensing. 
    more » « less
  5. Peptide surfactants (PEPS) are studied to capture and retain rare earth elements (REEs) at air–water interfaces to enable REE separations. 
    more » « less