skip to main content

Title: Using smart speakers to contactlessly monitor heart rhythms

Heart rhythm assessment is indispensable in diagnosis and management of many cardiac conditions and to study heart rate variability in healthy individuals. We present a proof-of-concept system for acquiring individual heart beats using smart speakers in a fully contact-free manner. Our algorithms transform the smart speaker into a short-range active sonar system and measure heart rate and inter-beat intervals (R-R intervals) for both regular and irregular rhythms. The smart speaker emits inaudible 18–22 kHz sound and receives echoes reflected from the human body that encode sub-mm displacements due to heart beats. We conducted a clinical study with both healthy participants and hospitalized cardiac patients with diverse structural and arrhythmic cardiac abnormalities including atrial fibrillation, flutter and congestive heart failure. Compared to electrocardiogram (ECG) data, our system computed R-R intervals for healthy participants with a median error of 28 ms over 12,280 heart beats and a correlation coefficient of 0.929. For hospitalized cardiac patients, the median error was 30 ms over 5639 heart beats with a correlation coefficient of 0.901. The increasing adoption of smart speakers in hospitals and homes may provide a means to realize the potential of our non-contact cardiac rhythm monitoring system for monitoring of contagious or quarantined patients, skin sensitive patients and in telemedicine settings.

more » « less
Award ID(s):
Author(s) / Creator(s):
; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Communications Biology
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Cardiovascular diseases are the leading cause of death globally. Noninvasive, accurate, and continuous cardiovascular monitoring can enable the preemptive detection of heart diseases and timely intervention to prevent serious cardiac complications. However, unobtrusive, ambulatory, and comprehensive cardiac monitoring is still a challenge as conventional electronics are rigid, heavy, or consume too much power for long‐term measurement. This work presents a thin (200 µm), stretchable (20%), lightweight (2.5 g), wireless, and low‐power (<3 mW) cardiac monitoring device that conforms to the human chest like a temporary tattoo sticker, correspondingly known as an e‐tattoo. This chest e‐tattoo features dual‐mode electro‐mechanical sensing—bio‐electric cardiac signals via electrocardiography and mechanical cardiac rhythm via seismocardiography. A unique peripheral synchronization strategy between the two sensors enables the measurement of systolic time intervals like the pre‐ejection period and the left ventricular ejection time with high accuracy (error = −0.44 ± 8.74 ms) while consuming very low power. The e‐tattoo is validated against clinically approved gold‐standard instruments on five human subjects. The good wearability and low power consumption of this e‐tattoo permit 24‐h continuous ambulatory monitoring.

    more » « less
  2. Using wireless signals to monitor human vital signs, especially heartbeat information, has been intensively studied in the past decade. This non-contact sensing modality can drive various applications from cardiac health, sleep, and emotion management. Under the circumstance of the COVID-19 pandemic, non-contact heart monitoring receives increasingly market demands. However, existing wireless heart monitoring schemes can only detect limited heart activities, such as heart rate, fiducial points, and Seismocardiography (SCG)-like information. In this paper, we present CardiacWave to enable a non-contact high-definition heart monitoring. CardiacWave can provide a full spectrum of Electrocardiogram (ECG)-like heart activities, including the details of P-wave, T-wave, and QRS complex. Specifically, CardiacWave is built upon the Cardiac-mmWave scattering effect (CaSE), which is a variable frequency response of the cardiac electromagnetic field under the mmWave interrogation. The CardiacWave design consists of a noise-resistant sensing scheme to interrogate CaSE and a cardiac activity profiling module for extracting cardiac electrical activities from the interrogation response. Our experiments show that the CardiacWave-induced ECG measures have a high positive correlation with the heart activity ground truth (i.e., measurements from a medical-grade instrument). The timing difference of P-waves, T-waves, and QRS complex is 0.67%, 0.71%, and 0.49%, respectively, and a mean cardiac event difference is within a delay of 5.3 milliseconds. These results indicate that CaridacWave offers high-fidelity and integral heart clinical characteristics. Furthermore, we evaluate the CardiacWave system with participants under various conditions, including heart and breath rates, ages, and heart habits (e.g., tobacco use). 
    more » « less
  3. Late gadolinium enhancement (LGE) with cardiac magnetic resonance (CMR) imaging is the clinical reference for assessment of myocardial scar and focal fibrosis. However, current LGE techniques are confined to imaging of a single cardiac phase, which hampers assessment of scar motility and does not allow cross-comparison between multiple phases. In this work, we investigate a three step approach to obtain cardiac phase-resolved LGE images: (1) Acquisition of cardiac phase-resolved imaging data with varyingT1weighting. (2) Generation of semi-quantitativeT1*maps for each cardiac phase. (3) Synthetization of LGE contrast to obtain functional LGE images. The proposed method is evaluated in phantom imaging, six healthy subjects at 3T and 20 patients at 1.5T. Phantom imaging at 3T demonstrates consistent contrast throughout the cardiac cycle with a coefficient of variation of 2.55 ± 0.42%.In-vivoresults show reliable LGE contrast with thorough suppression of the myocardial tissue is healthy subjects. The contrast between blood and myocardium showed moderate variation throughout the cardiac cycle in healthy subjects (coefficient of variation 18.2 ± 3.51%). Images were acquired at 40–60 ms and 80 ms temporal resolution, at 3T and 1.5, respectively. Functional LGE images acquired in patients with myocardial scar visualized scar tissue throughout the cardiac cycle, albeit at noticeably lower imaging resolution and noise resilience than the reference technique. The proposed technique bears the promise of integrating the advantages of phase-resolved CMR with LGE imaging, but further improvements in the acquisition quality are warranted for clinical use.

    more » « less
  4. Purpose

    To develop and evaluate a cardiac phase‐resolved myocardial T1mapping sequence.


    The proposed method for temporally resolved parametric assessment of Z‐magnetization recovery (TOPAZ) is based on contiguous fast low‐angle shot imaging readout after magnetization inversion from the pulsed steady state. Thereby, segmented k‐space data are acquired over multiple heartbeats, before reaching steady state. This results in sampling of the inversion‐recovery curve for each heart phase at multiple points separated by an R‐R interval. Joint T1andestimation is performed for reconstruction of cardiac phase‐resolved T1andmaps. Sequence parameters are optimized using numerical simulations. Phantom and in vivo imaging are performed to compare the proposed sequence to a spin‐echo reference and saturation pulse prepared heart rate–independent inversion‐recovery (SAPPHIRE) T1mapping sequence in terms of accuracy and precision.


    In phantom, TOPAZ T1values with integratedcorrection are in good agreement with spin‐echo T1values (normalized root mean square error = 4.2%) and consistent across the cardiac cycle (coefficient of variation = 1.4 ± 0.78%) and different heart rates (coefficient of variation = 1.2 ± 1.9%). In vivo imaging shows no significant difference in TOPAZ T1times between the cardiac phases (analysis of variance:P = 0.14, coefficient of variation = 3.2 ± 0.8%), but underestimation compared with SAPPHIRE (T1time ± precision: 1431 ± 56 ms versus 1569 ± 65 ms). In vivo precision is comparable to SAPPHIRE T1mapping until middiastole (P > 0.07), but deteriorates in the later phases.


    The proposed sequence allows cardiac phase‐resolved T1mapping with integratedassessment at a temporal resolution of 40 ms. Magn Reson Med 79:2087–2100, 2018. © 2017 International Society for Magnetic Resonance in Medicine.

    more » « less
  5. Background Early diagnosis is essential for effective stroke therapy. Strokes in hospitalized patients are associated with worse outcomes compared with strokes in the community. We derived and validated an algorithm to identify strokes by monitoring upper limb movements in hospitalized patients. Methods and Results A prospective case–control study in hospitalized patients evaluated bilateral arm accelerometry from patients with acute stroke with lateralized weakness and controls without stroke. We derived a stroke classifier algorithm from 123 controls and 77 acute stroke cases and then validated the performance in a separate cohort of 167 controls and 33 acute strokes, measuring false alarm rates in nonstroke controls and time to detection in stroke cases. Faster detection time was associated with more false alarms. With a median false alarm rate among nonstroke controls of 3.6 (interquartile range [IQR], 2.1–5.0) alarms per patient per day, the median time to detection was 15.0 (IQR, 8.0–73.5) minutes. A median false alarm rate of 1.1 (IQR. 0–2.2) per patient per day was associated with a median time to stroke detection of 29.0 (IQR, 11.0–58.0) minutes. There were no differences in algorithm performance for subgroups dichotomized by age, sex, race, handedness, nondominant hemisphere involvement, intensive care unit versus ward, or daytime versus nighttime. Conclusions Arm movement data can be used to detect asymmetry indicative of stroke in hospitalized patients with a low false alarm rate. Additional studies are needed to demonstrate clinical usefulness. 
    more » « less