Terahertz (THz) wireless links have attracted significant attention due to their pivotal role in next-generation communication systems. Multiplexing is one of the key techniques used to expand channel capacity for high-speed data transmission in point-to-point wireless communication. Using a pair of multifunction metasurfaces, we construct mode division multiplexing (MDM) in THz wireless link with cylindrical vector beams (CVBs) as orthogonal channels. The proposed metasurfaces integrate the functions of CVB generation and vector mode multiplexing, greatly simplifying MDM links. The simulated and measured results show that the multiplexer/demultiplexers are broadband in the frequency range of concern (from 0.36 to 0.44 THz) and compatible with frequency-division-multiplexing and polarization-division-multiplexing. Importantly, we experimentally accomplished a two-channel MDM in a direct modulation THz communication system at 0.36 THz in which the maximum modulation speed is 5 GHz (isolation>20dB). This study will lay the groundwork for CVB-based multidimensional multiplexing in the THz spectrum, potentially enhancing high-capacity THz communication.
This content will become publicly available on February 19, 2025
Metasurfaces have been continuously garnering attention in both scientific and industrial fields owing to their unprecedented wavefront manipulation capabilities using arranged subwavelength artificial structures. Terahertz vortex beams have become a focus of research in recent years due to their prominent role in many cutting-edge applications. However, traditional terahertz vortex beam plates are often faced with challenges including large size, low efficiency, and limited working bandwidth. Here, we propose and experimentally demonstrate highly efficient and broadband vortex beam plates based on metasurface in the terahertz region. The experimental results well verify that the designed metasurfaces can efficiently generate terahertz vortex beams with different orbital angular momentum topological charges in the range of 0.5–1 THz. Notably, the maximum efficiency can reach about 65% at 0.5 THz. The proposed devices may play a vital role in developing vortex beams-related terahertz applications.
more » « less- Award ID(s):
- 2114103
- PAR ID:
- 10538228
- Publisher / Repository:
- AIP Publishing
- Date Published:
- Journal Name:
- Applied Physics Letters
- Volume:
- 124
- Issue:
- 8
- ISSN:
- 0003-6951
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract The notion of metasurface has inspired the innovation of various functional devices in the terahertz band, but the intrisinc dispersion restricts their application in broadband scenarios. Here, two terahertz achromatic linear‐phase‐gradient metasurface devices are demonstrated, which are a beam deflector and a beam splitter, respectively. The phase and dispersion of the metasurfaces are simultaneously engineered by changing the geometric parameters of the unit cells made of silicon gratings and pillars. The simulated and experimental results demonstrate the achromatic feasibility of the beam deflector from 0.6 to 1.2 THz and of the beam splitter from 0.6 to 1.1 THz. The transmittances and the splitting ratios of the achromatic beam splitter are also analyzed. The metasurface based achromatic beam deflector and splitter presented here not only enrich the terahertz functional devices, but the methods and structures may also promote the research of broadband terahertz metasurfaces.
-
Abstract We design and fabricate an artificial dielectric prism that can steer a terahertz beam in space and experimentally investigate its behavior. The artificial dielectric medium consists of a uniformly spaced stack of metal plates, electromagnetically equivalent to an array of parallel-plate waveguides operating in tandem. At an operating frequency of 0.3 THz, we observe a maximum beam deflection of 29°, limited by the precision of the available spacers. Spring-loading the spacers between the plates allow us to scan the beam continuously and dynamically over a range of 5°. The measured beam intensity maps at the input and output of the device reveal very good Gaussian beam quality and an estimated power efficiency of 71%. As a possible real-world application, we integrate the prism into the path of a free-space terahertz communication link and demonstrate unimpaired performance.
-
Abstract Metasurfaces have drawn considerable attentions for their revolutionary capability of tailoring the amplitude, phase, and polarization of light. By integrating the nonlinear optical processes into metasurfaces, new wavelengths are introduced as an extra degree of freedom for further advancing the device performance. However, most of the existing nonlinear plasmonic metasurfaces are based on metallic nanoantennas as meta‐atoms, suffering from strong background transmission, low laser damage threshold and small nonlinear conversion efficiency. Here, Babinet‐inverted plasmonic metasurfaces made of C‐shaped nanoapertures as meta‐atoms are designed and demonstrated to solve these issues. Rotation‐gradient nonlinear metasurfaces are further constructed for producing spin‐selective second‐harmonic vortex beams with the orbital angular momentum (OAM) and beam diffraction angle determined by both the spin states of the fundamental wave and second‐harmonic emission. The results enable new types of functional metasurface chips for applications in spin, OAM, and wavelength multiplexed optical trapping, all‐optical communication, and optical data storage.
-
Artificially designed modulators that enable a wealth of freedom in manipulating the terahertz (THz) waves at will are an essential component in THz sources and their widespread applications. Dynamically controlled metasurfaces, being multifunctional, ultrafast, integrable, broadband, high contrasting, and scalable on the operating wavelength, are critical in developing state-of-the-art THz modulators. Recently, external stimuli-triggered THz metasurfaces integrated with functional media have been extensively explored. The vanadium dioxide (VO2)-based hybrid metasurfaces, as a unique path toward active meta-devices, feature an insulator–metal phase transition under the excitation of heat, electricity, and light, etc. During the phase transition, the optical and electrical properties of the VO2 film undergo a massive modification with either a boosted or dropped conductivity by more than four orders of magnitude. Being benefited from the phase transition effect, the electromagnetic response of the VO2-based metasufaces can be actively controlled by applying external excitation. In this review, we present recent advances in dynamically controlled THz metasurfaces exploiting the VO2 phase transition categorized according to the external stimuli. THz time-domain spectroscopy is introduced as an indispensable platform in the studies of functional VO2 films. In each type of external excitation, four design strategies are employed to realize external stimuli-triggered VO2-based THz metasurfaces, including switching the transreflective operation mode, controlling the dielectric environment of metallic microstructures, tailoring the equivalent resonant microstructures, and modifying the electromagnetic properties of the VO2 unit cells. The microstructures’ design and electromagnetic responses of the resulting active metasurfaces have been systematically demonstrated, with a particular focus on the critical role of the VO2 films in the dynamic modulation processes.