skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Mobile brain imaging in butoh dancers: from rehearsals to public performance
Abstract Dissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan. We report the experimental design, methods, and practical execution of a highly interdisciplinary project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, among others. We explain in detail how we technically validated all our EEG procedures (e.g., via impedance value monitoring) and how we minimized potential artifacts in our recordings (e.g., via electrooculography and inertial measurement units). We also describe the engineering details and hardware that enabled us to achieve synchronization between signals recorded in different sampling frequencies, and a signal preprocessing and denoising pipeline that we have used to re-sample our data and remove power line noise. As our experiment culminated in a live performance, where we generated a real-time visualization of the dancers’ interbrain synchrony on a screen via an artistic brain-computer interface, we outline all the methodology (e.g., filtering, time-windows, equation) we used for online bispectrum estimations. We also share all the raw EEG data and codes we used in our recordings. We, lastly, describe how we envision that the data could be used to address several hypotheses, such as that of interbrain synchrony or the motor theory of vocal learning. Being, to our knowledge, the first study to report synchronous and simultaneous recording from five dancers, we expect that our findings will inform future art-science collaborations, as well as dance-movement therapies.  more » « less
Award ID(s):
2150415 2137255
PAR ID:
10538318
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
bioRxiv
Date Published:
Format(s):
Medium: X
Institution:
bioRxiv
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract BackgroundDissecting the neurobiology of dance would shed light on a complex, yet ubiquitous, form of human communication. In this experiment, we sought to study, via mobile electroencephalography (EEG), the brain activity of five experienced dancers while dancing butoh, a postmodern dance that originated in Japan. ResultsWe report the experimental design, methods, and practical execution of a highly interdisciplinary project that required the collaboration of dancers, engineers, neuroscientists, musicians, and multimedia artists, among others. We explain in detail how we technically validated all our EEG procedures (e.g., via impedance value monitoring) and minimized potential artifacts in our recordings (e.g., via electrooculography and inertial measurement units). We also describe the engineering details and hardware that enabled us to achieve synchronization between signals recorded at different sampling frequencies, along with a signal preprocessing and denoising pipeline that we used for data re-sampling and power line noise removal. As our experiment culminated in a live performance, where we generated a real-time visualization of the dancers’ interbrain synchrony on a screen via an artistic brain-computer interface, we outline all the methodology (e.g., filtering, time-windows, equation) we used for online bispectrum estimations. Additionally, we provide access to all the raw EEG data and codes we used in our recordings. We, lastly, discuss how we envision that the data could be used to address several hypotheses, such as that of interbrain synchrony or the motor theory of vocal learning. ConclusionsBeing, to our knowledge, the first study to report synchronous and simultaneous recording from five dancers, we expect that our findings will inform future art-science collaborations, as well as dance-movement therapies. 
    more » « less
  2. In this demonstration, we present a holographic projected version of LuminAI, which is an interactive art installation that allows participants to collaborate with an AI dance partner by improvising movements together. By utilizing a mix of a top-down and bottom-up approach, we seek to understand embodied co-creativity in an improvisational dance setting to better develop the design of the modular AI agent to creatively collaborate with a dancer. The purpose of this demonstration is to describe the five-module agent design and investigate how we can design an immersive experience that is design-efficient, portable, light, and duo-user participation. Through this installation in an imitated black box space, audience members and dancers engage in an immersive co-creative dance experience, inspiring discussion on the limitless applications of dance and technology in the realms of learning, training, and creativity. 
    more » « less
  3. Analyzing dance moves and routines is a foundational step in learning dance. Videos are often utilized at this step, and advancements in machine learning, particularly in human-movement recognition, could further assist dance learners. We developed and evaluated a Wizard-of-Oz prototype of a video comprehension tool that offers automatic in-situ dance move identification functionality. Our system design was informed by an interview study involving 12 dancers to understand the challenges they face when trying to comprehend complex dance videos and taking notes. Subsequently, we conducted a within-subject study with 8 Cuban salsa dancers to identify the benefits of our system compared to an existing traditional feature-based search system. We found that the quality of notes taken by participants improved when using our tool, and they reported a lower workload. Based on participants’ interactions with our system, we offer recommendations on how an AI-powered span-search feature can enhance dance video comprehension tools. 
    more » « less
  4. null (Ed.)
    The goal of this report is to describe to users of the TUH EEG Corpus four important concepts that must be understood to correctly retrieve EEG signals from a data file (e.g., an EDF file). The four key concepts described in this document are: (1) physical placement: the location of the electrodes on the scalp, (2) unipolar montage: the differential recording process used to reduce noise, (3) channel labels: the system used to describe the channels, or digital signals, represented in a computer file and (4) bipolar montages: the differential mapping used to accentuate clinically-relevant events in the signal. This report is not intended to be a primer on the electrophysiology of an EEG, which is a subject unto itself, or a tutorial on how neurologists interpret EEGs. This report simply explains how the signal data in an EEG file must be accessed to accurately support clinical applications (e.g., manual interpretation or annotation of an EEG) and research applications (e.g., automatic interpretation using machine learning). 
    more » « less
  5. Not AvailableThe intersection of dance and artificial intelligence presents fertile ground for exploring human-machine interaction, co-creation, and embodied expression. This paper reports on a seven month four-phase collaboration with fifteen dancers from a university dance department, encompassing a preliminary study, redesign of LuminAI-a co-creative AI dance partner-, a contextual diary study, and a culminating public performance. Thematic analysis of responses revealed LuminAI’s impact on dancers’ perceptions, improvisational practices, and creative exploration. By blending human and AI interactions, LuminAI influenced dancers’ practices by pushing them to explore the unexpected, fostering deeper self-awareness, and enabling novel choreographic pathways. The experience reshaped their creative sub processes, enhancing their spatial awareness, movement vocabulary, and openness to experimentation. Our contributions underscore the potential of AI to not only augment dancers’ immediate improvisational capabilities but also to catalyze broader transformations in their creative processes, paving the way for future systems that inspire and amplify human creativity. 
    more » « less