skip to main content


Title: Two draft genomes of enigmatic Solenogastres (Mollusca, Aplacophora) Epimenia babai and Neomenia megatrapezata
Many molluscan genomes have been published to date, however only three are from representatives of the subphylum Aculifera (Polyplacophora, Caudofoveata, and Solenogastres), the sister taxon to all other molluscs. Currently, genomic resources are completely lacking for Solenogastres. This gap in knowledge hinders comparative and evolutionary studies. Here, we sequenced the genomes of the solenogaster aplacophoransEpimenia babaiSalvini-Plawen, 1997 andNeomenia megatrapezataSalvini-Plawen & Paar-Gausch, 2004 using a hybrid approach combining Oxford Nanopore and Illumina reads. ForE. babai, we produced a 628 Mbp haploid assembly (N50 = 413 Kbp, L50 = 370) that is rather complete with a BUSCO completeness score of 90.1% (82.0% single, 8.1% duplicated, 6.0% fragmented, and 3.9% missing). ForN. megatrapezata, we produced a 412 Mbp haploid assembly (N50 = 132 Kbp, L50 = 881) that is also rather complete with a BUSCO completeness score of 85.1% (81.7% single, 3.4% duplicated, 8.1% fragmented, and 6.8% missing). Our annotation pipeline predicted 25,393 gene models forE. babaiwith a BUSCO score of 92.4% (80.5% single, 11.9% duplicated, 4.9% fragmented, and 2.7% missing) and 22,463 gene models forN. megatrapezatawith a BUSCO score of 90.2% (81.0% single, 9.2% duplicated, 4.7% fragmented, and 5.1% missing). Phylogenomic analysis recovered Solenogastres as the sister taxon to Polyplacophora and Aculifera as the sister taxon to all other sampled molluscs with maximal support. These represent the first whole-genome resources for Solenogastres and will be valuable for future studies investigating this understudied group and molluscan evolution as a whole.  more » « less
Award ID(s):
1846174
PAR ID:
10538377
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
F1000 Research Ltd.
Date Published:
Journal Name:
F1000Research
Volume:
13
ISSN:
2046-1402
Page Range / eLocation ID:
318
Subject(s) / Keyword(s):
Aculifera Aplacophora Solenogastres genome
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Mollusca is the second most species-rich phylum and includes animals as disparate as octopuses, clams, and chitons. Dozens of molluscan genomes are available, but only one representative of the subphylum Aculifera, the sister taxon to all other molluscs, has been sequenced to date, hindering comparative and evolutionary studies. To facilitate evolutionary studies across Mollusca, we sequenced the genome of a second aculiferan mollusc, the lepidopleurid chiton Hanleya hanleyi (Bean 1844), using a hybrid approach combining Oxford Nanopore and Illumina reads. After purging redundant haplotigs and removing contamination from this 1.3% heterozygous genome, we produced a 2.5 Gbp haploid assembly (>4X the size of the other chiton genome sequenced to date) with an N50 of 65.0 Kbp. Despite a fragmented assembly, the genome is rather complete (92.0% of BUSCOs detected; 79.4% complete plus 12.6% fragmented). Remarkably, the genome has the highest repeat content of any molluscan genome reported to date (>66%). Our gene annotation pipeline predicted 69,284 gene models (92.9% of BUSCOs detected; 81.8% complete plus 11.1% fragmented) of which 35,362 were supported by transcriptome and/or protein evidence. Phylogenomic analysis recovered Polyplacophora sister to all other sampled molluscs with maximal support. The Hanleya genome will be a valuable resource for studies of molluscan biology with diverse potential applications ranging from evolutionary and comparative genomics to molecular ecology. 
    more » « less
  2. Insect silk is a versatile biomaterial. Lepidoptera and Trichoptera display some of the most diverse uses of silk, with varying strength, adhesive qualities, and elastic properties. Silk fibroin genes are long (>20 Kbp), with many repetitive motifs that make them challenging to sequence. Most research thus far has focused on conserved N- and C-terminal regions of fibroin genes because a full comparison of repetitive regions across taxa has not been possible. Using the PacBio Sequel II system and SMRT sequencing, we generated high fidelity (HiFi) long-read genomic and transcriptomic sequences for the Indianmeal moth (Plodia interpunctella) and genomic sequences for the caddisfly Eubasilissa regina. Both genomes were highly contiguous (N50  = 9.7 Mbp/32.4 Mbp, L50  = 13/11) and complete (BUSCO complete  = 99.3%/95.2%), with complete and contiguous recovery of silk heavy fibroin gene sequences. We show that HiFi long-read sequencing is helpful for understanding genes with long, repetitive regions. 
    more » « less
  3. Wheat, Christopher (Ed.)
    Abstract We present a chromosome-length genome assembly and annotation of the Black Petaltail dragonfly (Tanypteryx hageni). This habitat specialist diverged from its sister species over 70 million years ago, and separated from the most closely related Odonata with a reference genome 150 million years ago. Using PacBio HiFi reads and Hi-C data for scaffolding we produce one of the most high-quality Odonata genomes to date. A scaffold N50 of 206.6 Mb and a single copy BUSCO score of 96.2% indicate high contiguity and completeness. 
    more » « less
  4. Abstract The fish order Syngnathiformes has been referred to as a collection of misfit fishes, comprising commercially important fish such as red mullets as well as the highly diverse seahorses, pipefishes, and seadragons—the well-known family Syngnathidae, with their unique adaptations including male pregnancy. Another ornate member of this order is the species mandarinfish. No less than two types of chromatophores have been discovered in the spectacularly colored mandarinfish: the cyanophore (producing blue color) and the dichromatic cyano-erythrophore (producing blue and red). The phylogenetic position of mandarinfish in Syngnathiformes, and their promise of additional genetic discoveries beyond the chromatophores, made mandarinfish an appealing target for whole-genome sequencing. We used linked sequences to create synthetic long reads, producing a highly contiguous genome assembly for the mandarinfish. The genome assembly comprises 483 Mbp (longest scaffold 29 Mbp), has an N50 of 12 Mbp, and an L50 of 14 scaffolds. The assembly completeness is also high, with 92.6% complete, 4.4% fragmented, and 2.9% missing out of 4584 BUSCO genes found in ray-finned fishes. Outside the family Syngnathidae, the mandarinfish represents one of the most contiguous syngnathiform genome assemblies to date. The mandarinfish genomic resource will likely serve as a high-quality outgroup to syngnathid fish, and furthermore for research on the genomic underpinnings of the evolution of novel pigmentation. 
    more » « less
  5. Wheat, Christopher (Ed.)
    Abstract

    The blackstripe livebearer Poeciliopsis prolifica is a live-bearing fish belonging to the family Poeciliidae with high level of postfertilization maternal investment (matrotrophy). This viviparous matrotrophic species has evolved a structure similarly to the mammalian placenta. Placentas have independently evolved multiple times in Poeciliidae from nonplacental ancestors, which provide an opportunity to study the placental evolution. However, there is a lack of high-quality reference genomes for the placental species in Poeciliidae. In this study, we present a 674 Mb assembly of P. prolifica in 504 contigs with excellent continuity (contig N50 7.7 Mb) and completeness (97.2% Benchmarking Universal Single-Copy Orthologs [BUSCO] completeness score, including 92.6% single-copy and 4.6% duplicated BUSCO score). A total of 27,227 protein-coding genes were annotated from the merged datasets based on bioinformatic prediction, RNA sequencing and homology evidence. Phylogenomic analyses revealed that P. prolifica diverged from the guppy (Poecilia reticulata) ∼19 Ma. Our research provides the necessary resources and the genomic toolkit for investigating the genetic underpinning of placentation.

     
    more » « less