skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Helicity and dissipation correlation in anisotropic turbulent flow fields
The relation between the helicity and the rate of dissipation of turbulent kinetic energy in turbulent flows has been a matter of debate. Herein, direct numerical simulations of turbulent Poiseuille and Couette flow were used in combination with the tracking of helicity, helicity density, and dissipation along the trajectories of passive scalar markers to probe the correlation between helicity and dissipation in anisotropic turbulence. The Schmidt number of the scalar markers varied between 0.7, 6, and infinite (i.e., fluid particles), while the friction Reynolds number for both simulations was 300. The probing tools were the autocorrelation coefficients, the cross correlation coefficients between helicity and dissipation, and the joint probability density function calculated in the Lagrangian framework along the positions of the scalar markers. These markers were released at different locations within the flow field, including the viscous wall sublayer, the transition layer, the logarithmic region, and the outer flow. In addition, conditional statistics for scalar markers that dispersed most or least in the flow field were also calculated. It was found that helicity and dissipation changed along the trajectories of scalar markers; however, helicity and dissipation were not correlated in the Lagrangian framework. There was anticorrelation between helicity and dissipation in the near wall region, which was less obvious in the logarithmic region. More importantly, helicity could be used to characterize the alignment of the fluctuating velocity and vorticity vectors along the trajectories of scalar markers that disperse the farthest in the direction normal to the channel wall.  more » « less
Award ID(s):
1803014
PAR ID:
10538414
Author(s) / Creator(s):
;
Publisher / Repository:
Physics of Fluids
Date Published:
Journal Name:
Physics of Fluids
Volume:
35
Issue:
10
ISSN:
1070-6631
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The correlation between helicity and turbulent transport in turbulent flows is probed with the use of direct numerical simulation and Lagrangian scalar tracking. Channel flow and plane Couette flow at friction Reynolds number 300 and Lagrangian data along the trajectories of fluid particles and passive particles with Schmidt numbers 0.7 and 6 are used. The goal is to identify characteristics of the flow that enhance turbulent transport from the wall, and how flow regions that exhibit these characteristics are related to helicity. The relationship between vorticity and relative helicity along particle trajectories is probed, and the relationship between the distribution of helicity conditioned on Reynolds stress quadrants is also evaluated. More importantly, the correlation between relative helicity density and the alignment of vorticity with velocity vectors and eigenvectors of the rate of strain tensor is presented. Separate computations for particles that disperse the farthest into the flow field and those that disperse the least are conducted to determine the flow structures that contribute to turbulent dispersion. The joint distribution of helicity and vertical velocity, and helicity and vertical vorticity depends on the location of particle release and the Schmidt number. The trajectories of particles that disperse the least are characterized by a correlation between the absolute value of the relative helicity density and the absolute value of the cosine between the vorticity vector and the eigenvectors of the rate of strain tensor, while the value of this correlation approaches zero for the particles that disperse the most. 
    more » « less
  2. Highly-resolved, direct numerical simulations of turbulent channel flows with sub- Kolmogorov grid resolution are performed to investigate the characteristics of wall-bounded turbulent flows in the presence of sinusoidal wall waviness. The wall waviness serves as a simplified model to study the effects of well-defined geometric parameters of roughness on the characteristics of wall-bounded turbulent flows. In this study, a two-dimensional wave profile with steepness ranging from 0.06 to 0.25 and wave amplitudes ranging from 9 to 36 wall units were considered. For the smooth and wavy-wall simulations, the Reynolds number based on the friction velocity was kept constant. To study the effects of wave amplitude and wavelength on turbulence, two-dimensional time and spanwise averaged distributions of the mean flow, turbulent kinetic energy, and Reynolds stresses as well as turbulent kinetic energy production and dissipation are examined. Furthermore, in order to provide a more direct comparison with the smooth-wall turbulent channel flow one-dimensional pro- files of these quantities are computed by averaging them over one wavelength of the wave profile. A strong effect of the wall-waviness and, in particular, the wave amplitude and wavelength on the characteristics of the turbulence was obtained. Wall waviness mainly affected the inner flow region while all recorded turbulent statistics collapsed in the outer flow region. Significant reductions in turbulent kinetic energy, production and dissipation were obtained with increasing wave amplitudes when reported in inner scale. While production is lower for all wavy wall cases considered here in comparison to the smooth wall, reducing the wavelength caused an increase in production and a decrease in dissipation. 
    more » « less
  3. Borazjani, Iman (Ed.)
    The stress distribution along the trajectories of passive particles released in turbulent flow were computed with the use of Lagrangian methods and direct numerical simulations. The flow fields selected were transitional Poiseuille-Couette flow situations found in ventricular assist devices and turbulent flows at conditions found in blood pumps. The passive particle properties were selected to represent molecules of the von Willebrand factor (vWF) protein. Damage to the vWF molecule can cause disease, most often related to hemostasis. The hydrodynamic shear stresses along the trajectories of the particles were calculated and the changes in the distribution of stresses were determined for proteins released in different locations in the flow field and as a function of exposure time. The stress distributions indicated that even when the average applied stress was within a safe operating regime, the proteins spent part of their trajectories in flow areas of damaging stress. Further examination showed that the history of the distribution of stresses applied on the vWF molecules, rather than the average, should be used to evaluate hydrodynamically-induced damage. 
    more » « less
  4. null (Ed.)
    Large-eddy simulations are conducted to contrast momentum and passive scalar transport over large, three-dimensional roughness elements in a turbulent channel flow. Special attention is given to the dispersive fluxes, which are shown to be a significant fraction of the total flux within the roughness sublayer. Based on pointwise quadrant analysis, the turbulent components of the transport of momentum and scalars are found to be similar in general, albeit with increasing dissimilarity for roughnesses with low frontal blockage. However, strong dissimilarity is noted between the dispersive momentum and scalar fluxes, especially below the top of the roughness elements. In general, turbulence is found to transport momentum more efficiently than scalars, while the reverse applies to the dispersive contributions. The effects of varying surface geometries, measured by the frontal density, are pronounced on turbulent fluxes and even more so on dispersive fluxes. Increasing frontal density induces a general transition in the flow from a wall bounded type to a mixing layer type. This transition results in an increase in the efficiency of turbulent momentum transport, but the reverse occurs for scalars due to reduced contributions from large-scale motions in the roughness sublayer. This study highlights the need for distinct parameterizations of the turbulent and dispersive fluxes, as well as the importance of considering the contrasts between momentum and scalar transport for flows over very rough surfaces. 
    more » « less
  5. High-speed, spatially-evolving turbulent boundary layers are of great importance across civilian and military applications. Furthermore, compressible boundary layers present additional challenges for energy and active scalar transport. Understanding transport phenomena is critical to efficient high-speed vehicle designs. Although at any instantaneous point in time a flow field may seem random, regions within the flow can exhibit coherency across space and time. These coherent structures play a key role in momentum and energy transport within the boundary layer. The two main categories for coherent structure identification are Eulerian and Lagrangian approaches. In this video, we focus on 4D (3D+Time) Lagrangian Coherent Structure (LCS), and the effect of wall curvature/temperature on these structures. We present the finite-time Lyapunov exponent (FTLE) for three wall thermal conditions (cooling, quasi-adiabatic and heating) for a concave wall curvature that builds on the experimental study by Donovan et al. (J. Fluid Mech., 259, 1-24, 1994). The flow is subject to a strong concave curvature (δ/R ~ -0.083, R is the curvature radius) followed by a very strong convex curvature (δ/R = 0.17). A GPU-accelerated particle simulation forms the basis for the 3-D FTLE where particles are advected over flow fields obtained via Direct Numerical Simulation (DNS) with high spatial/temporal resolution. We also show the cross-correlation between Q2 events (ejections) and the FTLE. The video is available at: https://gfm.aps.org/meetings/dfd-2022/63122e0e199e4c2da9a946a0 
    more » « less