Abstract A BiFeO3film is grown epitaxially on a PrScO3single crystal substrate which imparts ~ 1.45% of biaxial tensile strain to BiFeO3resulting from lattice misfit. The biaxial tensile strain effect on BiFeO3is investigated in terms of crystal structure, Poisson ratio, and ferroelectric domain structure. Lattice resolution scanning transmission electron microscopy, precession electron diffraction, and X-ray diffraction results clearly show that in-plane interplanar distance of BiFeO3is the same as that of PrScO3with no sign of misfit dislocations, indicating that the biaxial tensile strain caused by lattice mismatch between BiFeO3and PrScO3are stored as elastic energy within BiFeO3film. Nano-beam electron diffraction patterns compared with structure factor calculation found that the BiFeO3maintains rhombohedral symmetry, i.e., space group ofR3c. The pattern analysis also revealed two crystallographically distinguishable domains. Their relations with ferroelectric domain structures in terms of size and spontaneous polarization orientations within the domains are further understood using four-dimensional scanning transmission electron microscopy technique.
more »
« less
Diffraction-Based Multiscale Residual Strain Measurements
Abstract Modern analytical tools, from microfocus X-ray diffraction (XRD) to electron microscopy-based microtexture measurements, offer exciting possibilities of diffraction-based multiscale residual strain measurements. The different techniques differ in scale and resolution, but may also yield significantly different strain values. This study, for example, clearly established that high-resolution electron backscattered diffraction (HR-EBSD) and high-resolution transmission Kikuchi diffraction (HR-TKD) [sensitive to changes in interplanar angle (Δθθ)], provide quantitatively higher residual strains than micro-Laue XRD and transmission electron microscope (TEM) based precession electron diffraction (PED) [sensitive to changes in interplanar spacing (Δdd)]. Even after correcting key known factors affecting the accuracy of HR-EBSD strain measurements, a scaling factor of ∼1.57 (between HR-EBSD and micro-Laue) emerged. We have then conducted “virtual” experiments by systematically deforming an ideal lattice by either changing an interplanar angle (α) or a lattice parameter (a). The patterns were kinematically and dynamically simulated, and corresponding strains were measured by HR-EBSD. These strains showed consistently higher values for lattice(s) distorted by α, than those altered by a. The differences in strain measurements were further emphasized by mapping identical location with HR-TKD and TEM-PED. These measurements exhibited different spatial resolution, but when scaled (with ∼1.57) provided similar lattice distortions numerically.
more »
« less
- Award ID(s):
- 2147126
- PAR ID:
- 10538421
- Publisher / Repository:
- Oxford Academic
- Date Published:
- Journal Name:
- Microscopy and Microanalysis
- Volume:
- 30
- Issue:
- 2
- ISSN:
- 1431-9276
- Page Range / eLocation ID:
- 236 to 252
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
null (Ed.)Sm-doped BiFeO 3 (Bi 0.85 Sm 0.15 FeO 3 , or BSFO) thin films were fabricated on (001) SrTiO 3 (STO) substrates by pulsed laser deposition (PLD) over a range of deposition temperatures (600 °C, 640 °C and 670 °C). Detailed analysis of their microstructure via X-ray diffraction (XRD) and transmission electron microscopy (TEM) shows the deposition temperature dependence of ferroelectric (FE) and antiferroelectric (AFE) phase formation in BSFO. The Sm dopants are clearly detected by high-resolution scanning transmission electron microscopy (HR-STEM) and prove effective in controlling the ferroelectric properties of BSFO. The BSFO ( T dep = 670 °C) presents larger remnant polarization (Pr) than the other two BSFO ( T dep = 600 °C, 640 °C) and pure BiFeO 3 (BFO) thin films. This study paves a simple way for enhancing the ferroelectric properties of BSFO via deposition temperature and further promoting BFO practical applications.more » « less
-
Low-angle grain boundaries (LAGBs) accommodate residual stress through the rearrangement and accumulation of dislocations during cold rolling. This study presents an electron wind force-based annealing approach to recover cold-rolling induced residual stress in FeCrAl alloy below 100 °C in 1 min. This is significantly lower than conventional thermal annealing, which typically requires temperatures around 750 °C for about 1.5 h. A key feature of our approach is the athermal electron wind force effect, which promotes dislocation movement and stress relief at significantly lower temperatures. The electron backscattered diffraction (EBSD) analysis reveals that the concentration of low-angle grain boundaries (LAGBs) is reduced from 82.4% in the cold-rolled state to a mere 47.5% following electropulsing. This level of defect recovery even surpasses the pristine material’s initial state, which exhibited 54.8% LAGBs. This reduction in LAGB concentration was complemented by kernel average misorientation (KAM) maps and X-ray diffraction (XRD) Full Width at Half Maximum (FWHM) measurements, which further validated the microstructural enhancements. Nanoindentation tests revealed a slight increase in hardness despite the reduction in dislocation density, suggesting a balance between grain boundary refinement and dislocation dynamics. This proposed low-temperature technique, driven by athermal electron wind forces, presents a promising avenue for residual stress mitigation while minimizing undesirable thermal effects, paving the way for advancements in various material processing applications.more » « less
-
Strain-transformable Ti-based alloys are known to display a superior combination of strength, ductility and strain-hardening and attracted considerable interest on recent years. They generally still display, however, a limited yield strength that can be possibly overcome by further precipitation strengthening of the developed systems. In that work, we developed a design strategy to reach a forged dual-phase (α+β) microstructure with TRIP/TWIP properties in a Ti–10V–2Fe–3Al alloy. The results showed an excellent combination of mechanical properties due to the strain-transformable deformed β-matrix. The investigation on the deformation mechanisms in the Ti–10V–2Fe–3Al alloy was accurately performed by means of both in-situ synchrotron XRD, mechanical testing followed by SEM/EBSD mapping and “post mortem” TEM microstructural analyses. Combined Twinning Induced Plasticity (TWIP) and Transformation Induced Plasticity (TRIP) effects were shown to be intensively activated in the alloy. The particular role of stain-induced martensite α″, acting as a relaxation mechanism at the α∕β interfaces, as well as the strong interactions between mechanical twins and primary α nodules were particularly highlighted.more » « less
-
In the present study, thermal stability of α-Ga2O3 under vacuum and ambient pressure conditions was investigated in situ by x-ray diffraction and transmission electron microscopy (TEM). It was observed that the thermal stability of α-Ga2O3 increased by 200 °C when pressure was lowered from an atmospheric to a vacuum level. This finding can be explained by oxygen diffusion under different oxygen partial pressures. In addition, in situ TEM imaging revealed that, once past the decomposition temperature, the onset of phase change propagates from the top crystal surface and accumulates strain, eventually resulting in a fractural film. The mechanism of α-Ga2O3 to β-Ga2O3 transition is evaluated through experiments and is discussed in this manuscript.more » « less