skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, May 16 until 2:00 AM ET on Saturday, May 17 due to maintenance. We apologize for the inconvenience.


Title: Towards higher frequencies in a compact prebunched waveguide THz-FEL
Abstract Free-electron-lasers fill a critical gap in the space of THz-sources as they can reach high average and peak powers with spectral tunability. Using a waveguide in a THz FEL significantly increases the coupling between the relativistic electrons and electromagnetic field enabling large amounts of radiation to be generated in a single passage of electrons through the undulator. In addition to transversely confining the radiation, the dispersive properties of the waveguide critically affect the velocity and slippage of the radiation pulse which determine the central frequency and bandwidth of the generated radiation. In this paper, we characterize the spectral properties of a compact waveguide THz FEL including simultaneous lasing at two different frequencies and demonstrating tuning of the radiation wavelength in the high frequency branch by varying the beam energy and ensuring that the electrons injected into the undulator are prebunched on the scale of the resonant radiation wavelength.  more » « less
Award ID(s):
1734215
PAR ID:
10538492
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
Nature Publishing Group
Date Published:
Journal Name:
Nature Communications
Volume:
15
Issue:
1
ISSN:
2041-1723
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Extremely high beam-to-radiation energy conversion efficiencies can be obtained in a THz FEL using a strongly tapered helical undulator at the zero-slippage resonant condition, where a circular waveguide is used to match the radiation group velocity to the electron beam longitudinal velocity. In this paper we report on the first electro-optic sampling (EOS) based measurements of the broadband THz FEL radiation pulses emitted in this regime. The THz field waveforms are reconstructed in the spatial and temporal domains using multi-shot and single-shot EOS schemes respectively. The measurements are performed varying the input electron beam energy in the undulator providing insights on the complex dynamics in a waveguide FEL. 
    more » « less
  2. One solution for producing longitudinally coherent FEL pulses is to store and recirculate the output of an amplifier in an X-ray cavity so that the X-ray pulse can interact with following fresh electron bunches over many passes. The X-ray FEL oscillator (XFELO) and the X-ray regenerative amplifier FEL (XRAFEL) concepts use this technique and rely on the same fundamental ingredients to realize their full capability. Both schemes require a high repetition rate electron beam, an undulator to provide FEL gain, and an X- ray cavity to recirculate and monochromatize the radiation. The shared infrastructure, complementary performance char- acteristics, and potentially transformative FEL properties of the XFELO and XRAFEL have brought together a joint Argonne National Laboratory (ANL) and SLAC National Laboratory (SLAC) collaboration aimed at enabling these schemes at LCLS-II. We present plans to install a rectangu- lar X-ray cavity in the LCLS-II undulator hall and perform experiments employing 2-bunch copper RF linac accelerated electron beams. This includes performing cavity ring-down measurements and 2-pass gain measurements for both the low-gain XFELO and the high-gain XRAFEL schemes. 
    more » « less
  3. Accelerator-based x-ray free-electron lasers (XFELs) are the latest addition to the revolutionary tools of discovery for the 21st century. The two major components of an XFEL are an accelerator-produced electron beam and a magnetic undulator, which tend to be kilometer-scale long and expensive. A proof-of-principle demonstration of free-electron lasing at 27 nm using beams from compact laser wakefield accelerators was shown recently by using a magnetic undulator. However, scaling these concepts to x-ray wavelengths is far from straightforward as the requirements on the beam quality and jitters become much more stringent. Here, we present an ultracompact scheme to produce tens of attosecond x-ray pulses with several GW peak power utilizing a novel aspect of the FEL instability using a highly chirped, prebunched, and ultrabright tens of MeVelectron beam from a plasma-based accelerator interacting with an optical undulator. The FEL resonant relation between the prebunched period and the energy selects resonant electrons automatically from the highly chirped beam which leads to a stable generation of attosecond x-ray pulses. Furthermore, two-color attosecond pulses with subfemtosecond separation can be produced by adjusting the energy distribution of the electron beam so that multiple FEL resonances occur at different locations within the beam. Such a tunable coherent attosecond x-ray sources may open up a new area of attosecond science enabled by x-ray attosecond pump/probe techniques 
    more » « less
  4. This work demonstrates the magnetic field-induced spectral properties of metamaterials incorporating both indium antimonide (InSb) and tungsten (W) in the terahertz (THz) frequency regime. Nanostructure materials, layer thicknesses and surface grating fill factors are modified, impacting light-matter interactions and consequently modifying thermal emission. We describe and validate a method for determining spectral properties of InSb under an applied direct current (DC) magnetic field, and employ this method to analyze how these properties can be tuned by modulating the field magnitude. Notably, an InSb-W metamaterial exhibiting unity narrowband emission is designed, suitable as an emitter for wavelengths around 55µm (approximately 5.5 THz), which is magnetically tunable in bandwidth and peak wavelength. 
    more » « less
  5. Abstract The sub‐Terahertz and Terahertz bands play a critical role in next‐generation wireless communication and sensing technologies, thanks to the large amount of available bandwidth in this spectral regime. While long‐wavelength (microwave to mm‐Wave) and short‐wavelength (near‐infrared to ultraviolet) devices are well‐established and studied, the sub‐THz to THz regime remains relatively underexplored and underutilized. Traditional approaches used in the aforementioned spectral regions are more difficult to replicate in the THz band, leading to the need for the development of novel devices and structures that can manipulate THz radiation effectively. Herein a novel organic, solid‐state electrochemical device is presented, capable of achieving modulation depths of over 90% from ≈500 nm of a conducting polymer that switches conductivity over a large dynamic range upon application of an electronically controllable external bias. The stability of such devices under long‐term, repeated voltage switching, as well as continuous biasing at a single voltage, is also explored. Switching stabilities and long‐term bias stabilities are achieved over two days for both use cases. Additionally, both depletion mode (always “ON”) and accumulation mode (always “OFF”) operation are demonstrated. These results suggest applications of organic electrochemical THz modulators in large area and flexible implementations. 
    more » « less