skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 8:00 PM ET on Friday, March 21 until 8:00 AM ET on Saturday, March 22 due to maintenance. We apologize for the inconvenience.


Title: ARGem: a new metagenomics pipeline for antibiotic resistance genes: metadata, analysis, and visualization

Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user’s configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available athttps://github.com/xlxlxlx/ARGem.

 
more » « less
Award ID(s):
2125798 2004751
PAR ID:
10538526
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ; ; ; ; ; ; ;
Publisher / Repository:
Frontiers
Date Published:
Journal Name:
Frontiers in Genetics
Volume:
14
ISSN:
1664-8021
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies to date profile ARGs using sequence homology, but such approaches provide limited information about the broader context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, andEnterobacter cloacae), which represent urgent threats to human health because they tend to be multi-antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running the pipeline is publicly available athttps://github.com/NazifaMoumi/PPI-ARG-ESKAPE

     
    more » « less
  2. null (Ed.)
    Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance. 
    more » « less
  3. Abstract

    In the fight to limit the global spread of antibiotic resistance, the assembly of environmental metagenomes has the potential to provide rich contextual information (e.g., taxonomic hosts, carriage on mobile genetic elements) about antibiotic resistance genes (ARG) in the environment. However, computational challenges associated with assembly can impact the accuracy of downstream analyses. This work critically evaluates the impact of assembly leveraging short reads, nanopore MinION long-reads, and a combination of the two (hybrid) on ARG contextualization for ten environmental metagenomes using seven prominent assemblers (IDBA-UD, MEGAHIT, Canu, Flye, Opera-MS, metaSpades and HybridSpades). While short-read and hybrid assemblies produced similar patterns of ARG contextualization, raw or assembled long nanopore reads produced distinct patterns. Based on an in-silico spike-in experiment using real and simulated reads, we show that low to intermediate coverage species are more likely to be incorporated into chimeric contigs across all assemblers and sequencing technologies, while more abundant species produce assemblies with a greater frequency of inversions and insertion/deletions (indels). In sum, our analyses support hybrid assembly as a valuable technique for boosting the reliability and accuracy of assembly-based analyses of ARGs and neighboring genes at environmentally-relevant coverages, provided that sufficient short-read sequencing depth is achieved.

     
    more » « less
  4. Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM . Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB ( P=0.0007 ) and tetM gene concentrations ( P=0.0425 ). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT , tetM , erm(35) , ermF , ermB , str , aadD , and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations. 
    more » « less
  5. Antibiotic resistance is a continually rising threat to global health. A primary driver of the evolution of new strains of resistant pathogens is the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). However, identifying and quantifying ARGs subject to HGT remains a significant challenge. Here, we introduce HT-ARGfinder (horizontally transferred ARG finder), a pipeline that detects and enumerates horizontally transferred ARGs in metagenomic data while also estimating the directionality of transfer. To demonstrate the pipeline, we applied it to an array of publicly-available wastewater metagenomes, including hospital sewage. We compare the horizontally transferred ARGs detected across various sample types and estimate their directionality of transfer among donors and recipients. This study introduces a comprehensive tool to track mobile ARGs in wastewater and other aquatic environments. 
    more » « less