Antibiotic resistance (AR) presents a global health challenge, necessitating an improved understanding of the ecology, evolution, and dissemination of antibiotic resistance genes (ARGs). Several tools, databases, and algorithms are now available to facilitate the identification of ARGs in metagenomic sequencing data; however, direct annotation of short-read data provides limited contextual information. Knowledge of whether an ARG is carried in the chromosome or on a specific mobile genetic element (MGE) is critical to understanding mobility, persistence, and potential for co-selection. Here we developed ARGContextProfiler, a pipeline designed to extract and visualize ARG genomic contexts. By leveraging the assembly graph for genomic neighborhood extraction and validating contexts through read mapping, ARGContextProfiler minimizes chimeric errors that are a common artifact of assembly outputs. Testing on real, synthetic, and semi-synthetic data, including long-read sequencing data from environmental samples, demonstrated that ARGContextProfiler offers superior accuracy, precision, and sensitivity compared to conventional assembly-based methods. ARGContextProfiler thus provides a powerful tool for uncovering the genomic context of ARGs in metagenomic sequencing data, which can be of value to both fundamental and applied research aimed at understanding and stemming the spread of AR. The source code of ARGContextProfiler is publicly available atGitHub.
more »
« less
ARGem: a new metagenomics pipeline for antibiotic resistance genes: metadata, analysis, and visualization
Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user’s configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available athttps://github.com/xlxlxlx/ARGem.
more »
« less
- PAR ID:
- 10538526
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Genetics
- Volume:
- 14
- ISSN:
- 1664-8021
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies to date profile ARGs using sequence homology, but such approaches provide limited information about the broader context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE pathogens (Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa, andEnterobacter cloacae), which represent urgent threats to human health because they tend to be multi-antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running the pipeline is publicly available athttps://github.com/NazifaMoumi/PPI-ARG-ESKAPEmore » « less
-
null (Ed.)Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance.more » « less
-
Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM . Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB ( P=0.0007 ) and tetM gene concentrations ( P=0.0425 ). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT , tetM , erm(35) , ermF , ermB , str , aadD , and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations.more » « less
-
Abstract BackgroundWhile there is increasing recognition of numerous environmental contributions to the spread of antibiotic resistance, quantifying the relative contributions of various sources remains a fundamental challenge. Similarly, there is a need to differentiate acute human health risks corresponding to exposure to a given environment, versus broader ecological risk of evolution and spread of antibiotic resistance genes (ARGs) across microbial taxa. Recent studies have proposed various methods of harnessing the rich information housed by metagenomic data for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon the original MetaCompare pipeline by differentiating indicators of human health resistome risk (i.e., potential for human pathogens to acquire ARGs) from ecological resistome risk (i.e., overall mobility of ARGs across a given microbiome). ResultsTo demonstrate the sensitivity of the MetaCompare 2.0 pipeline, we analyzed publicly available metagenomes representing a broad array of environments, including wastewater, surface water, soil, sediment, and human gut. We also assessed the effect of sequence assembly methods on the risk scores. We further evaluated the robustness of the pipeline to sequencing depth, contig count, and metagenomic library coverage bias through comparative analysis of a range of subsamples extracted from a set of deeply sequenced wastewater metagenomes. The analysis utilizing samples from different environments demonstrated that MetaCompare 2.0 consistently produces lower risk scores for environments with little human influence and higher risk scores for human contaminated environments affected by pollution or other stressors. We found that the ranks of risk scores were not measurably affected by different assemblers employed. The Meta-Compare 2.0 risk scores were remarkably consistent despite varying sequencing depth, contig count, and coverage. ConclusionMetaCompare 2.0 successfully ranked a wide array of environments according to both human health and ecological resistome risks, with both scores being strongly impacted by anthropogenic stress. We packaged the improved pipeline into a publicly-available web service that provides an easy-to-use interface for computing resistome risk scores and visualizing results. The web service is available athttp://metacompare.cs.vt.edu/more » « less
An official website of the United States government

