skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Comparison of antibiotic resistance genes in swine manure storage pits of Iowa, USA
Antimicrobial resistance (AMR) can develop in deep-pit swine manure storage when bacteria are selectively pressured by unmetabolized antibiotics. Subsequent manure application on row crops is then a source of AMR into soil and downstream runoff water. Therefore, understanding the patterns of diverse antibiotic resistance genes (ARGs) in manure among different farms is important for both interpreting the results of the detection of these genes from previous studies and for the use of these genes as bioindicators of manure borne antibiotic resistance in the environment. Previous studies of manure-associated ARGs are based on limited samples of manures. To better understand the distribution of ARGs between manures, we characterized manures from 48 geographically independent swine farms across Iowa. The objectives of this study were to characterize the distribution of ARGs among these manures and to evaluate what factors in manure management may influence the presence of ARGs in manures. Our analysis included quantification of two commonly found ARGs in swine manure, ermB and tetM . Additionally, we characterized a broader suite of 31 ARGs which allowed for simultaneous assays of the presence or absence of multiple genes. We found the company integrator had a significant effect on both ermB ( P=0.0007 ) and tetM gene concentrations ( P=0.0425 ). Our broad analysis on ARG profiles found that the tet(36) gene was broadly present in swine manures, followed by the detection of tetT , tetM , erm(35) , ermF , ermB , str , aadD , and intl3 in samples from 14 farms. Finally, we provide a comparison of methods to detect ARGs in manures, specifically comparing conventional and high-throughput qPCR and discuss their role in ARG environmental monitoring efforts. Results of this study provide insight into commonalities of ARG presence in manure holding pits and provide supporting evidence that company integrator decisions may impact ARG concentrations.  more » « less
Award ID(s):
1828942
PAR ID:
10444300
Author(s) / Creator(s):
; ; ; ;
Date Published:
Journal Name:
Frontiers in Antibiotics
Volume:
2
ISSN:
2813-2467
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The application of animal manures to cropland is an important nutrient recycling strategy in many parts of the world. Commonly, aggregated manure wastes contain chemical stressors including veterinary antimicrobials, heavy metals, and antimicrobial resistance genes (ARGs) that can stimulate the development and proliferation of antimicrobial resistance (AMR). While the presence of antimicrobials in manure is well-documented, the co-occurrence of other potentially impactful chemical stressors in swine manure remains underreported. This study quantifies and analyzes correlations between antimicrobials, metals, and certain ARGs present in manure samples from swine farms in Iowa, United States. Relationships between chemical stressors and different stages of swine production or feed composition are also investigated. Results revealed substantial levels of tetracyclines [up to 1,260 µg g −1 dry weight (d.w.) of manure for oxytetracycline] detected in all samples. Tiamulin, two ionophores (monensin and lasalocid), and one macrolide (tilmicosin) were detected at maximum class concentrations of 9.4, 0.547, and 0.472 µg g −1 d.w., respectively. The median relative abundances of ermB and tetM were 0.13 and 0.17 copies g −1 wet weight (w.w.) manure (normalized to 16S gene), respectively. Additionally, high levels of copper (Cu), iron (Fe), and zinc (Zn) were detected in all samples, with maximum concentrations of 887, 1,900, and 2,100 µg g −1 d.w., respectively. Notably, uranium (U) was detected in 11 samples, at concentrations up to 0.77 µg g −1 . A global analysis of AMR-stressor relationships using Spearman’s rank correlation indicates Cu, and Ba are the most positively and significantly correlated with cytotoxic anhydrotetracycline (ATC) and/or anhydrochlortetracycline (ACTC) concentrations in all tested facilities (Cu-ATC: ρ = 0.67, p = 0.0093; Cu-ACTC: ρ = 0.75, p = 0.0022; Ba-ATC: ρ = 0.84, p = 0.0002). Interestingly, ermB and tetM genes were strongly, positively correlated to each other ( ρ = 0.92, p < 0.0001), suggesting possible co-selection, despite the absence of correlation between ARGs and tetracycline concentrations. This study demonstrates the complexity of interactions between antimicrobials, metals, and ARGs in multiple manure storage pits prior to cropland application. 
    more » « less
  2. null (Ed.)
    Antimicrobial resistance is a well-documented public health concern. The role that drinking water distribution pipes have as sources of antibiotic resistance genes (ARGs) is not well known. Metals are a known stressor for antibiotic resistance development, implying that aging metal-pipe infrastructure could be a source of ARGs. The objective of this study was to determine if ARGs, metal resistance genes (MRGs), and intI 1 were pervasive across various pipe biofilm sample types (biomass surfaces, pipe surfaces, corrosion tubercles, and under corrosion tubercles) and if the resistance genes associated with particular microbial taxa. Eight sample types in triplicate ( n = 24) were taken from inside a >100 year-old, six ft. section of a full-scale chloraminated cast iron drinking water main. Droplet digital PCR (ddPCR) was employed as a novel approach to quantify ARGs in pipes from full-scale drinking water distribution systems (DWDS) because it yielded higher detection frequencies than quantitative PCR (qPCR). Illumina sequencing was employed to characterize the microbial community based on 16S rRNA genes. ARGs and MRGs were detected in all 24 pipe samples. Every sample contained targeted genes. Interestingly, the mean absolute abundances of ARGs and MRGs only varied by approximately one log value across sample types, but the mean relative abundances (copy numbers normalized to 16S rRNA genes) varied by over two log values. The ARG and MRGs concentrations were not significantly different between sample types, despite significant changes in dominant microbial taxa. The most abundant genera observed in the biofilm communities were Mycobacterium (0.2–70%), and β-lactam resistance genes bla TEM , bla SHV , and the integrase gene of class 1 integrons ( intI 1) were positively correlated with Mycobacterium . The detection of ARGs, MRGs, and class 1 integrons across all sample types within the pipe indicates that pipes themselves can serve as sources for ARGs in DWDS. Consequently, future work should investigate the role of pipe materials as well as corrosion inhibitors to determine how engineering decisions can mitigate ARGs in drinking water that stem from pipe materials. 
    more » « less
  3. The COVID-19 pandemic offered a unique opportunity to study shifts in environmental antibiotic resistance that could be associated with the changes in disinfectant and/or antibiotic usage patterns, coinfections, or other behaviors. The aim of this study was to document temporal changes (pre-, early-, versus later-pandemic) in antibiotic resistance genes (ARGs), ARG hosts, biomarkers of potential coinfections, and the total microbiome in municipal wastewater influent from one separate sanitary and one combined sewer system. The 16S rRNA gene copy normalized concentration of qacE was higher in early- than prepandemic samples, and sul1 and tet(G) were higher in early- than later-pandemic samples. Metagenomics revealed significant changes in the abundance of the macrolide and sulfonamide ARG classes. COVID-19 cases positively correlated with the disinfectants/antiseptics group of ARGs and negatively correlated with the sulfonamide and aminoglycoside resistance classes. Discussion is provided regarding the correspondence of these observations with antibiotic prescription pattern changes during the study period. Putative waterborne pathogens were identified, which is of potential interest for understanding the prevalence of community coinfections. No changes in host-ARG associations were observed. Overall, the results of this study may help in understanding the impact of the pandemic and/or lack thereof on another public health crisis: antibiotic resistance. 
    more » « less
  4. Abstract The pace of antibiotic resistance necessitates advanced tools to detect and analyze antibiotic resistance genes (ARGs). We presentresLens, a family of genomic language models (gLM) leveraging latent genomic representations for ARG detection and analysis. Unlike alignment-based methods constrained by reference databases,resLensfine-tunes pre-trained gLMs on curated ARG datasets, achieving superior performance across several evaluation scenarios, including when ARGs exhibit dissimilar sequences and mechanisms to those in reference databases. 
    more » « less
  5. Abstract Antimicrobial resistance (AMR) is considered a critical threat to public health, and genomic/metagenomic investigations featuring high-throughput analysis of sequence data are increasingly common and important. We previously introduced MEGARes, a comprehensive AMR database with an acyclic hierarchical annotation structure that facilitates high-throughput computational analysis, as well as AMR++, a customized bioinformatic pipeline specifically designed to use MEGARes in high-throughput analysis for characterizing AMR genes (ARGs) in metagenomic sequence data. Here, we present MEGARes v3.0, a comprehensive database of published ARG sequences for antimicrobial drugs, biocides, and metals, and AMR++ v3.0, an update to our customized bioinformatic pipeline for high-throughput analysis of metagenomic data (available at MEGLab.org). Database annotations have been expanded to include information regarding specific genomic locations for single-nucleotide polymorphisms (SNPs) and insertions and/or deletions (indels) when required by specific ARGs for resistance expression, and the updated AMR++ pipeline uses this information to check for presence of resistance-conferring genetic variants in metagenomic sequenced reads. This new information encompasses 337 ARGs, whose resistance-conferring variants could not previously be confirmed in such a manner. In MEGARes 3.0, the nodes of the acyclic hierarchical ontology include 4 antimicrobial compound types, 59 resistance classes, 233 mechanisms and 1448 gene groups that classify the 8733 accessions. 
    more » « less