While numerous environmental factors contribute to the spread of antibiotic resistance genes (ARGs), quantifying their relative contributions remains a fundamental challenge. Similarly, it is important to differentiate acute human health risks from environmental exposure, versus broader ecological risk of ARG evolution and spread across microbial taxa. Recent studies have proposed various methods for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon original MetaCompare pipeline by differentiating indicators of human health resistome risk (potential for human pathogens of acute resistance concern to acquire ARGs) from ecological resistome risk (overall mobility of ARGs and potential for pathogen acquisition). The updated pipeline's sensitivity was demonstrated by analyzing diverse publicly-available metagenomes from wastewater, surface water, soil, sediment, human gut, and synthetic microbial communities. MetaCompare 2.0 provided distinct rankings of the metagenomes according to both human health resistome risk and ecological resistome risk, with both scores trending higher when influenced by anthropogenic impact or other stress. We evaluated the robustness of the pipeline to sequence assembly methods, sequencing depth, contig count, and metagenomic library coverage bias. The risk scores were remarkably consistent despite variations in these technological aspects. We packaged the improved pipeline into a publicly-available web service (http://metacompare.cs.vt.edu/) that provides an easy-to-use interface for computing resistome risk scores and visualizing results.
While there is increasing recognition of numerous environmental contributions to the spread of antibiotic resistance, quantifying the relative contributions of various sources remains a fundamental challenge. Similarly, there is a need to differentiate acute human health risks corresponding to exposure to a given environment, versus broader ecological risk of evolution and spread of antibiotic resistance genes (ARGs) across microbial taxa. Recent studies have proposed various methods of harnessing the rich information housed by metagenomic data for achieving such aims. Here, we introduce MetaCompare 2.0, which improves upon the original MetaCompare pipeline by differentiating indicators of human health resistome risk (i.e., potential for human pathogens to acquire ARGs) from ecological resistome risk (i.e., overall mobility of ARGs across a given microbiome).
To demonstrate the sensitivity of the MetaCompare 2.0 pipeline, we analyzed publicly available metagenomes representing a broad array of environments, including wastewater, surface water, soil, sediment, and human gut. We also assessed the effect of sequence assembly methods on the risk scores. We further evaluated the robustness of the pipeline to sequencing depth, contig count, and metagenomic library coverage bias through comparative analysis of a range of subsamples extracted from a set of deeply sequenced wastewater metagenomes. The analysis utilizing samples from different environments demonstrated that MetaCompare 2.0 consistently produces lower risk scores for environments with little human influence and higher risk scores for human contaminated environments affected by pollution or other stressors. We found that the ranks of risk scores were not measurably affected by different assemblers employed. The Meta-Compare 2.0 risk scores were remarkably consistent despite varying sequencing depth, contig count, and coverage.
MetaCompare 2.0 successfully ranked a wide array of environments according to both human health and ecological resistome risks, with both scores being strongly impacted by anthropogenic stress. We packaged the improved pipeline into a publicly-available web service that provides an easy-to-use interface for computing resistome risk scores and visualizing results. The web service is available at
- PAR ID:
- 10538530
- Publisher / Repository:
- bioRxiv
- Date Published:
- Format(s):
- Medium: X
- Institution:
- bioRxiv
- Sponsoring Org:
- National Science Foundation
More Like this
-
Abstract -
Antibiotic resistance is a continually rising threat to global health. A primary driver of the evolution of new strains of resistant pathogens is the horizontal gene transfer (HGT) of antibiotic resistance genes (ARGs). However, identifying and quantifying ARGs subject to HGT remains a significant challenge. Here, we introduce HT-ARGfinder (horizontally transferred ARG finder), a pipeline that detects and enumerates horizontally transferred ARGs in metagenomic data while also estimating the directionality of transfer. To demonstrate the pipeline, we applied it to an array of publicly-available wastewater metagenomes, including hospital sewage. We compare the horizontally transferred ARGs detected across various sample types and estimate their directionality of transfer among donors and recipients. This study introduces a comprehensive tool to track mobile ARGs in wastewater and other aquatic environments.more » « less
-
null (Ed.)Wastewater treatment plants (WWTPs) receive a confluence of sewage containing antimicrobials, antibiotic resistant bacteria, antibiotic resistance genes (ARGs), and pathogens and thus are a key point of interest for antibiotic resistance surveillance. WWTP monitoring has the potential to inform with respect to the antibiotic resistance status of the community served as well as the potential for ARGs to escape treatment. However, there is lack of agreement regarding suitable sampling frequencies and monitoring targets to facilitate comparison within and among individual WWTPs. The objective of this study was to comprehensively evaluate patterns in metagenomic-derived indicators of antibiotic resistance through various stages of treatment at a conventional WWTP for the purpose of informing local monitoring approaches that are also informative for global comparison. Relative abundance of total ARGs decreased by ∼50% from the influent to the effluent, with each sampling location defined by a unique resistome (i.e., total ARG) composition. However, 90% of the ARGs found in the effluent were also detected in the influent, while the effluent ARG-pathogen taxonomic linkage patterns identified in assembled metagenomes were more similar to patterns in regional clinical surveillance data than the patterns identified in the influent. Analysis of core and discriminatory resistomes and general ARG trends across the eight sampling events (i.e., tendency to be removed, increase, decrease, or be found in the effluent only), along with quantification of ARGs of clinical concern, aided in identifying candidate ARGs for surveillance. Relative resistome risk characterization further provided a comprehensive metric for predicting the relative mobility of ARGs and likelihood of being carried in pathogens and can help to prioritize where to focus future monitoring and mitigation. Most antibiotics that were subject to regional resistance testing were also found in the WWTP, with the total antibiotic load decreasing by ∼40–50%, but no strong correlations were found between antibiotics and corresponding ARGs. Overall, this study provides insight into how metagenomic data can be collected and analyzed for surveillance of antibiotic resistance at WWTPs, suggesting that effluent is a beneficial monitoring point with relevance both to the local clinical condition and for assessing efficacy of wastewater treatment in reducing risk of disseminating antibiotic resistance.more » « less
-
Abstract With growing calls for increased surveillance of antibiotic resistance as an escalating global health threat, improved bioinformatic tools are needed for tracking antibiotic resistance genes (ARGs) across One Health domains. Most studies to date profile ARGs using sequence homology, but such approaches provide limited information about the broader context or function of the ARG in bacterial genomes. Here we introduce a new pipeline for identifying ARGs in genomic data that employs machine learning analysis of Protein-Protein Interaction Networks (PPINs) as a means to improve predictions of ARGs while also providing vital information about the context, such as gene mobility. A random forest model was trained to effectively differentiate between ARGs and nonARGs and was validated using the PPINs of ESKAPE pathogens (
Enterococcus faecium, Staphylococcus aureus, Klebsiella pneumoniae, Acinetobacter baumannii, Pseudomonas aeruginosa , andEnterobacter cloacae ), which represent urgent threats to human health because they tend to be multi-antibiotic resistant. The pipeline exhibited robustness in discriminating ARGs from nonARGs, achieving an average area under the precision-recall curve of 88%. We further identified that the neighbors of ARGs, i.e., genes connected to ARGs by only one edge, were disproportionately associated with mobile genetic elements, which is consistent with the understanding that ARGs tend to be mobile compared to randomly sampled genes in the PPINs. This pipeline showcases the utility of PPINs in discerning distinctive characteristics of ARGs within a broader genomic context and in differentiating ARGs from nonARGs through network-based attributes and interaction patterns. The code for running the pipeline is publicly available athttps://github.com/NazifaMoumi/PPI-ARG-ESKAPE -
Antibiotic resistance is of crucial interest to both human and animal medicine. It has been recognized that increased environmental monitoring of antibiotic resistance is needed. Metagenomic DNA sequencing is becoming an attractive method to profile antibiotic resistance genes (ARGs), including a special focus on pathogens. A number of computational pipelines are available and under development to support environmental ARG monitoring; the pipeline we present here is promising for general adoption for the purpose of harmonized global monitoring. Specifically, ARGem is a user-friendly pipeline that provides full-service analysis, from the initial DNA short reads to the final visualization of results. The capture of extensive metadata is also facilitated to support comparability across projects and broader monitoring goals. The ARGem pipeline offers efficient analysis of a modest number of samples along with affordable computational components, though the throughput could be increased through cloud resources, based on the user’s configuration. The pipeline components were carefully assessed and selected to satisfy tradeoffs, balancing efficiency and flexibility. It was essential to provide a step to perform short read assembly in a reasonable time frame to ensure accurate annotation of identified ARGs. Comprehensive ARG and mobile genetic element databases are included in ARGem for annotation support. ARGem further includes an expandable set of analysis tools that include statistical and network analysis and supports various useful visualization techniques, including Cytoscape visualization of co-occurrence and correlation networks. The performance and flexibility of the ARGem pipeline is demonstrated with analysis of aquatic metagenomes. The pipeline is freely available at
https://github.com/xlxlxlx/ARGem .