skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Development of visual object recognition
Object recognition is the process by which humans organize the visual world into meaningful perceptual units. In this Review, we examine the developmental origins and maturation of object recognition by synthesizing research from developmental psychology, cognitive neuroscience and computational modelling. We describe the extent to which infants demonstrate early traces of adult visual competencies within their first year. The rapid development of these competencies is supported by infant-specific biological and experiential constraints, including blurry vision and ‘self-curation’ of object viewpoints that best support learning. We also discuss how the neural mechanisms that support object-recognition abilities in infancy seem to differ from those in adulthood, with less engagement of the ventral visual pathway. We conclude that children’s specific developmental niche shapes early object-recognition abilities  more » « less
Award ID(s):
2123069
PAR ID:
10538555
Author(s) / Creator(s):
;
Publisher / Repository:
Nature Publishing Group US
Date Published:
Journal Name:
Anthropologica Slovaca
ISSN:
2730-0574
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Within the field of K-2 CS education, unplugged computational thinking (CT) activities have been suggested as beneficial for younger students and shown to impact young students’ skills and motivation to learn about CS. This study sought to examine how children demonstrate CT competencies in unplugged sequencing tasks and how children use manipulatives to solve unplugged sequencing tasks. This case study approach examined two unplugged sequencing tasks for six children ranging from ages four to seven (pre-kindergarten to 2nd grade). Children showed evidence of several CT competencies during the sequencing tasks: (1) pattern recognition, (2) algorithms and procedures, (3) problem decomposition, and (4) debugging. The strategies and use of manipulatives to showcase CT competencies seemed to evolve in complexity based on age and developmental levels. Taking into account children’s abilities to demonstrate CT competencies, this study suggests that sequencing is a developmentally appropriate entry point for young children to begin engaging in other CT competencies. In addition, these unplugged sequencing tasks can also be easily integrated into other activities commonly experienced in early childhood classrooms. 
    more » « less
  2. Individual differences in expertise with non-face objects has been positively related to neural selectivity for these objects in several brain regions, including in the fusiform face area (FFA). Recently, we reported that FFA’s cortical thickness is also positively correlated with expertise for non-living objects, while FFA’s cortical thickness is negatively correlated with face recognition ability. These opposite relations between structure and visual abilities, obtained in the same subjects, were postulated to reflect the earlier experience with faces relative to cars, with different mechanisms of plasticity operating at these different developmental times. Here we predicted that variability for faces, presumably reflecting pruning, would be found selectively in deep cortical layers. In 13 men selected to vary in their performance with faces, we used ultra-high field imaging (7 Tesla), we localized the FFA functionally and collected and averaged 6 ultra-high resolution susceptibility weighed images (SWI). Voxel dimensions were 0.194x0.194x1.00mm, covering 20 slices with 0.1mm gap. Images were then processed by two operators blind to behavioral results to define the gray matter/white matter (deep) and gray matter/CSF (superficial) cortical boundaries. Internal boundaries between presumed deep, middle and superficial cortical layers were obtained with an automated method based on image intensities. We used an extensive battery of behavioral tests to quantify both face and object recognition ability. We replicate prior work with face and non-living object recognition predicting large and independent parts of the variance in cortical thickness of the right FFA, in different directions. We also find that face recognition is specifically predicted by the thickness of the deep cortical layers in FFA, whereas recognition of vehicles relates to the thickness of all cortical layers. Our results represent the most precise structural correlate of a behavioral ability to date, linking face recognition ability to a specific layer of a functionally-defined area. 
    more » « less
  3. Abstract The neural mechanisms underlying conscious recognition remain unclear, particularly the roles played by the prefrontal cortex, deactivated brain areas and subcortical regions. We investigated neural activity during conscious object recognition using 7 Tesla fMRI while human participants viewed object images presented at liminal contrasts. Here, we show both recognized and unrecognized images recruit widely distributed cortical and subcortical regions; however, recognized images elicit enhanced activation of visual, frontoparietal, and subcortical networks and stronger deactivation of the default-mode network. For recognized images, object category information can be decoded from all of the involved cortical networks but not from subcortical regions. Phase-scrambled images trigger strong involvement of inferior frontal junction, anterior cingulate cortex and default-mode network, implicating these regions in inferential processing under increased uncertainty. Our results indicate that content-specific activity in both activated and deactivated cortical networks and non-content-specific subcortical activity support conscious recognition. 
    more » « less
  4. Abstract Object names are a major component of early vocabularies and learning object names depends on being able to visually recognize objects in the world. However, the fundamental visual challenge of the moment‐to‐moment variations in object appearances that learners must resolve has received little attention in word learning research. Here we provide the first evidence that image‐level object variability matters and may be the link that connects infant object manipulation to vocabulary development. Using head‐mounted eye tracking, the present study objectively measured individual differences in the moment‐to‐moment variability of visual instances of the same object, from infants’ first‐person views. Infants who generated more variable visual object images through manual object manipulation at 15 months of age experienced greater vocabulary growth over the next six months. Elucidating infants’ everyday visual experiences with objects may constitute a crucial missing link in our understanding of the developmental trajectory of object name learning. 
    more » « less
  5. Educational video games can engage students in authentic STEM practices, which often involve visual representations. In particular, because most interactions within video games are mediated through visual representations, video games provide opportunities for students to experience disciplinary practices with visual representations. Prior research on learning with visual representations in non-game contexts suggests that visual representations may confuse students if they lack prerequisite representational-competencies. However, it is unclear how this research applies to game environments. To address this gap, we investigated the role of representational-competencies for students’ learning from video games. We first conducted a single-case study of a high-performing undergraduate student playing an astronomy game as an assignment in an astronomy course. We found that this student had difficulties making sense of the visual representations in the game. We interpret these difficulties as indicating a lack of representational-competencies. Further, these difficulties seemed to lead to the student’s inability to relate the game experiences to the content covered in his astronomy course. A second study investigated whether interventions that have proven successful in structured learning environments to support representational-competencies would enhance students’ learning from visual representations in the video game. We randomly assigned 45 students enrolled in an undergraduate course to two conditions. Students either received representational-competency support while playing the astronomy game or they did not receive this support. Results showed no effects of representational-competency supports. This suggests that instructional designs that are effective for representational-competency supports in structured learning environments may not be effective for educational video games. We discuss implications for future research, for designers of educational games, and for educators. 
    more » « less