skip to main content


This content will become publicly available on April 14, 2025

Title: Multimodal Soft Robotic Actuator Modeling and Validation
The multimodal Zig-zag Soft Pneumatic Actuator (SPA) provides an effective design approach for achieving de- sired extensions and bending geometries under specific pressure conditions. The rigid body approximated model introduced in this study brings valuable insights into SPA dynamics by enabling faster simulations when compared to methods such as Finite Element Analysis (FEA). The model outlined in this paper forecasts static behavior by estimating the linear expansion of linear SPA and the bending angle of bending SPA. These two modes of motion can be combined to expand the degree of freedom. Depending on the configuration of the Strain Limiting Layer (SLL), the bending angle can be adjusted by controlling the actuator stiffness, a parameter that can be precisely characterized using the proposed actuator model. To address the hysteresis phenomena in linear expansion SPA, the Bouc-Wen hysteresis model is employed to model the actuator hysteresis responses at higher actuation rates. The validity of the proposed model is experimentally confirmed through the use of 3D-printed SPA prototypes that are designed for both extension and bending actuation.  more » « less
Award ID(s):
2326536
PAR ID:
10538628
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
IEEE
Date Published:
ISSN:
2769-4534
ISBN:
979-8-3503-8181-8
Page Range / eLocation ID:
359 to 365
Format(s):
Medium: X
Location:
San Diego, CA, USA
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract Soft electrothermal actuators have drawn extensive attention in recent years for their promising applications in biomimetic and biomedical areas. Most soft electrothermal actuators reported so far demonstrated uniform bending deformation, due to the deposition based fabrication of the conductive heater layer from nanomaterial-based solutions, which generally provides uniform heating capacity and uniform bending deformation. In this paper, a soft electrothermal actuator that can provide twisting deformation was designed and fabricated. A metallic microfilament heater of the soft twisting actuator was directly printed using electrohydrodynamic (EHD) printing, and embedded between two structural layers, a polyimide film and a polydimethylsiloxane layer, with distinct thermal expansion properties. Assisted by the direct patterning capabilities of EHD printing, a skewed heater pattern was designed and printed. This skewed heater pattern not only produces a skewed parallelogram-shaped temperature field, but also changes the stiffness anisotropy of the actuator, leading to twisting deformation with coupled bending. A theoretical kinematic model was built for the twisting actuator to describe its twisting deformation under different actuation effects. Based on that model, influence of design parameters on the twisting angle and motion trajectory of the twisting actuator were studied and validated by experiments. Finite element analysis was utilized for the thermal and deformation analysis of the actuator. The fabricated twisting actuator was characterized on its heating and twisting performance at different supply voltages. Using three twisting actuators, a soft gripper was designed and fabricated to implement pick-and-place operations of delicate objects. 
    more » « less
  2. A self-powered, and self-actuating lithium ion battery (LIB) has the potential to achieve large deformation while still maintaining actuation force. The energy storage capability allows for continual actuation without an external power source once charged. Reshaping the actuator requires a nonuniform distribution of charge and/or bending stiffness. Spatially varying the state of charge and bending stiffness along the length of a segmented unimorph configuration have the effect of improving the tailorability of the deformed actuator. In this paper, an analytical model is developed to predict the actuation properties of the segmented unimorph beam to determine its usefulness as an actuator. The model predicts the free deflection, blocked deflection, and blocked force at the tip as a function of spatially varying state of charge and bending stiffness. The main contribution of the paper is the development of blocked deflection over the length of the segmented unimorph, which has not yet been considered in the literature. The model is verified using experimental data and commercial finite element analysis. 
    more » « less
  3. Sensing and actuation are intricately connected in soft robotics, where contact may change actuator mechanics and robot behavior. To improve soft robotic control and performance, proprioception and contact sensors are needed to report robot state without altering actuation mechanics or introducing bulky, rigid components. For bioinspired McKibben-style fluidic actuators, prior work in sensing has focused on sensing the strain of the actuator by embedding sensors in the actuator bladder during fabrication, or by adhering sensors to the actuator surface after fabrication. However, material property mismatches between sensors and actuators can impede actuator performance, and many soft sensors available for use with fluidic actuators rely on costly or labor-intensive fabrication methods. Here, we demonstrate a low-cost and easy-to manufacture-tubular liquid metal strain sensor for use with soft actuators that can be used to detect actuator strain and contact between the actuator and external objects. The sensor is flexible, can be fabricated with commercial-off-the-shelf components, and can be easily integrated with existing soft actuators to supplement sensing, regardless of actuator shape or size. Furthermore, the soft tubular strain sensor exhibits low hysteresis and high sensitivity. The approach presented in this work provides a low-cost, soft sensing solution for broad application in soft robotics. 
    more » « less
  4. Silicon anodes in lithium ion batteries have high theoretical capacity and large volumetric expansion. In this paper, both characteristics are used in a segmented unimorph actuator consisting of several Si composite anodes on a copper current collector. Each unimorph segment is self-actuating during discharge and the discharge power can be provided to external circuits. With no external forces and zero current draw, the unimorph segments will maintain their actuated shape. Stresspotential coupling allows for the unimorph actuator to be self-sensing because bending changes the anodes’ potential. An analytical model is derived from a superposition of pure bending and extensional deformation forces and moments induced by the cycling of a Si anode. An approximately linear relationship between axial strain and state of charge of the anode drives the bending displacement of the unimorph. The segmented device consists of electrically insulated and individually controlled segments of the Si-coated copper foil to allow for variable curvature throughout the length of the beam. The model predicts the free deflection along the length of the beam and the blocked force. Tip deflection and blocked force are shown for a range of parameters including segment thicknesses, beam length, number of segments, and state of charge. The potential applications of this device include soft robots and dexterous 3D grippers. 
    more » « less
  5. This paper presents the design of a new soft pneumatic actuator whose direction and magnitude of bending may be precisely controlled via activation of different shape memory alloy (SMA) springs within the actuator, in conjunction with pneumatic actuation. This design is inspired by examples seen in nature such as the human tongue, where the combination of hydrostatic pressure and contraction of intrinsic muscle groups enables precise maneuverability and morphing capabilities. Here, SMA springs are embedded in the walls of the actuator, serving as intrinsic muscles that may be selectively activated to constrain the device. The pneumatic SMA (PneuSMA) actuator demonstrates remarkable spatial controllability evidenced by testing under different pressures and SMA activation combinations. A baseline finite element model is also developed to predict the actuator deformation under different pressure and activation conditions. 
    more » « less