This content will become publicly available on September 3, 2025
- Award ID(s):
- 2345561
- PAR ID:
- 10538660
- Publisher / Repository:
- IEEE International Joint Conference on Biometrics
- Date Published:
- Subject(s) / Keyword(s):
- Fairness in AI Semi-supervised learning
- Format(s):
- Medium: X
- Location:
- New York
- Sponsoring Org:
- National Science Foundation
More Like this
-
Speech emotion recognition (SER) is a challenging task due to the limited availability of real-world labeled datasets. Since it is easier to find unlabeled data, the use of self-supervised learning (SSL) has become an attractive alternative. This study proposes new pre-text tasks for SSL to improve SER. While our target application is SER, the proposed pre-text tasks include audio-visual formulations, leveraging the relationship between acoustic and facial features. Our proposed approach introduces three new unimodal and multimodal pre-text tasks that are carefully designed to learn better representations for predicting emotional cues from speech. Task 1 predicts energy variations (high or low) from a speech sequence. Task 2 uses speech features to predict facial activation (high or low) based on facial landmark movements. Task 3 performs a multi-class emotion recognition task on emotional labels obtained from combinations of action units (AUs) detected across a video sequence. We pre-train a network with 60.92 hours of unlabeled data, fine-tuning the model for the downstream SER task. The results on the CREMA-D dataset show that the model pre-trained on the proposed domain-specific pre-text tasks significantly improves the precision (up to 5.1%), recall (up to 4.5%), and F1-scores (up to 4.9%) of our SER system.more » « less
-
null (Ed.)Semi-supervised learning (SSL) is an appealing approach to resolve generalization problem for speech emotion recognition (SER) systems. By utilizing large amounts of unlabeled data, SSL is able to gain extra information about the prior distribution of the data. Typically, it can lead to better and robust recognition performance. Existing SSL approaches for SER include variations of encoder-decoder model structures such as autoencoder (AE) and variational autoencoders (VAEs), where it is difficult to interpret the learning mechanism behind the latent space. In this study, we introduce a new SSL framework, which we refer to as the DeepEmoCluster framework, for attribute-based SER tasks. The DeepEmoCluster framework is an end-to-end model with mel-spectrogram inputs, which combines a self-supervised pseudo labeling classification network with a supervised emotional attribute regressor. The approach encourages the model to learn latent representations by maximizing the emotional separation of K-means clusters. Our experimental results based on the MSP-Podcast corpus indicate that the DeepEmoCluster framework achieves competitive prediction performances in fully supervised scheme, outperforming baseline methods in most of the conditions. The approach can be further improved by incorporating extra unlabeled set. Moreover, our experimental results explicitly show that the latent clusters have emotional dependencies, enriching the geometric interpretation of the clusters.more » « less
-
Introduction Computer vision and deep learning (DL) techniques have succeeded in a wide range of diverse fields. Recently, these techniques have been successfully deployed in plant science applications to address food security, productivity, and environmental sustainability problems for a growing global population. However, training these DL models often necessitates the large-scale manual annotation of data which frequently becomes a tedious and time-and-resource- intensive process. Recent advances in self-supervised learning (SSL) methods have proven instrumental in overcoming these obstacles, using purely unlabeled datasets to pre-train DL models.
Methods Here, we implement the popular self-supervised contrastive learning methods of NNCLR Nearest neighbor Contrastive Learning of visual Representations) and SimCLR (Simple framework for Contrastive Learning of visual Representations) for the classification of spatial orientation and segmentation of embryos of maize kernels. Maize kernels are imaged using a commercial high-throughput imaging system. This image data is often used in multiple downstream applications across both production and breeding applications, for instance, sorting for oil content based on segmenting and quantifying the scutellum’s size and for classifying haploid and diploid kernels.
Results and discussion We show that in both classification and segmentation problems, SSL techniques outperform their purely supervised transfer learning-based counterparts and are significantly more annotation efficient. Additionally, we show that a single SSL pre-trained model can be efficiently finetuned for both classification and segmentation, indicating good transferability across multiple downstream applications. Segmentation models with SSL-pretrained backbones produce DICE similarity coefficients of 0.81, higher than the 0.78 and 0.73 of those with ImageNet-pretrained and randomly initialized backbones, respectively. We observe that finetuning classification and segmentation models on as little as 1% annotation produces competitive results. These results show SSL provides a meaningful step forward in data efficiency with agricultural deep learning and computer vision.
-
Automated segmentation of grey matter (GM) and white matter (WM) in gigapixel histopathology images is advantageous to analyzing distributions of disease pathologies, further aiding in neuropathologic deep phenotyping. Although supervised deep learning methods have shown good performance, its requirement of a large amount of labeled data may not be cost-effective for large scale projects. In the case of GM/WM segmentation, trained experts need to carefully trace the delineation in gigapixel images. To minimize manual labeling, we consider semi-surprised learning (SSL) and deploy one state-of-the-art SSL method (FixMatch) on WSIs. Then we propose a two-stage scheme to further improve the performance of SSL: the first stage is a self-supervised module to train an encoder to learn the visual representations of unlabeled data, subsequently, this well-trained encoder will be an initialization of consistency loss-based SSL in the second stage. We test our method on Amyloid-β stained histopathology images and the results outperform FixMatch with the mean IoU score at around 2% by using 6,000 labeled tiles while over 10% by using only 600 labeled tiles from 2 WSIs.Clinical relevance— this work minimizes the required labeling efforts by trained personnel. An improved GM/WM segmentation method could further aid in the study of brain diseases, such as Alzheimer’s disease.more » « less
-
The need for manual and detailed annotations limits the applicability of supervised deep learning algorithms in medical image analyses, specifically in the field of pathology. Semi-supervised learning (SSL) provides an effective way for leveraging unlabeled data to relieve the heavy reliance on the amount of labeled samples when training a model. Although SSL has shown good performance, the performance of recent state-of-the-art SSL methods on pathology images is still under study. The problem for selecting the most optimal data to label for SSL is not fully explored. To tackle this challenge, we propose a semi-supervised active learning framework with a region-based selection criterion. This framework iteratively selects regions for an-notation query to quickly expand the diversity and volume of the labeled set. We evaluate our framework on a grey-matter/white-matter segmentation problem using gigapixel pathology images from autopsied human brain tissues. With only 0.1% regions labeled, our proposed algorithm can reach a competitive IoU score compared to fully-supervised learning and outperform the current state-of-the-art SSL by more than 10% of IoU score and DICE coefficient.more » « less