skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Neuromuscular basis of Drosophila larval rolling escape behavior
When threatened by dangerous or harmful stimuli, animals engage in diverse forms of rapid escape behaviors. InDrosophilalarvae, one type of escape response involves C-shaped bending and lateral rolling followed by rapid forward crawling. The sensory circuitry that promotes larval escape has been extensively characterized; however, the motor programs underlying rolling are unknown. Here, we characterize the neuromuscular basis of rolling escape behavior. We used high-speed, volumetric, Swept Confocally Aligned Planar Excitation (SCAPE) microscopy to image muscle activity during larval rolling. Unlike sequential peristaltic muscle contractions that progress from segment to segment during forward and backward crawling, muscle activity progresses circumferentially during bending and rolling escape behavior. We propose that progression of muscular contraction around the larva’s circumference results in a transient misalignment between weight and the ground support forces, which generates a torque that induces stabilizing body rotation. Therefore, successive cycles of slight misalignment followed by reactive aligning rotation lead to continuous rolling motion. Supporting our biomechanical model, we found that disrupting the activity of muscle groups undergoing circumferential contraction progression leads to rolling defects. We use EM connectome data to identify premotor to motor connectivity patterns that could drive rolling behavior and perform neural silencing approaches to demonstrate the crucial role of a group of glutamatergic premotor neurons in rolling. Our data reveal body-wide muscle activity patterns and putative premotor circuit organization for execution of the rolling escape response.  more » « less
Award ID(s):
2326536 2325491 2327702
PAR ID:
10538676
Author(s) / Creator(s):
; ; ; ; ; ; ; ; ;
Publisher / Repository:
PNAS
Date Published:
Journal Name:
Proceedings of the National Academy of Sciences
Volume:
120
Issue:
51
ISSN:
0027-8424
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Animals generate diverse motor behaviors, yet how the same motor neurons (MNs) generate two distinct or antagonistic behaviors remains an open question. Here, we characterize Drosophila larval muscle activity patterns and premotor/motor circuits to understand how they generate forward and backward locomotion. We show that all body wall MNs are activated during both behaviors, but a subset of MNs change recruitment timing for each behavior. We used TEM to reconstruct a full segment of all 60 MNs and 236 premotor neurons (PMNs), including differentially-recruited MNs. Analysis of this comprehensive connectome identified PMN-MN ‘labeled line’ connectivity; PMN-MN combinatorial connectivity; asymmetric neuronal morphology; and PMN-MN circuit motifs that could all contribute to generating distinct behaviors. We generated a recurrent network model that reproduced the observed behaviors, and used functional optogenetics to validate selected model predictions. This PMN-MN connectome will provide a foundation for analyzing the full suite of larval behaviors. 
    more » « less
  2. The gaits of undulating animals arise from a complex interaction of their central nervous system, muscle, connective tissue, bone, and environment. As a simplifying assumption, many previous studies have often assumed that sufficient internal force is available to produce observed kinematics, thus not focusing on quantifying the interconnection between muscle effort, body shape, and external reaction forces. This interplay, however, is critical to locomotion performance in crawling animals, especially when accompanied by body viscoelasticity. Moreover, in bioinspired robotic applications, the body's internal damping is indeed a parameter that the designer can tune. Still, the effect of internal damping is not well understood. This study explores how internal damping affects the locomotion performance of a crawler with a continuous, viscoelastic, nonlinear beam model. Crawler muscle actuation is modeled as a traveling wave of bending moment propagating posteriorly along the body. Consistent with the friction properties of the scales of snakes and limbless lizards, environmental forces are modeled using anisotropic Coulomb friction. It is found that by varying the crawler body's internal damping, the crawler's performance can be altered, and distinct gaits could be achieved, including changing the net locomotion direction from forward to back. We will discuss this forward and backward control and identify the optimal internal damping for peak crawling speed. 
    more » « less
  3. Sengupta, Piali (Ed.)
    Animals must integrate sensory cues with their current behavioral context to generate a suitable response. How this integration occurs is poorly understood. Previously, we developed high-throughput methods to probe neural activity in populations ofCaenorhabditis elegansand discovered that the animal’s mechanosensory processing is rapidly modulated by the animal’s locomotion. Specifically, we found that when the worm turns it suppresses its mechanosensory-evoked reversal response. Here, we report thatC.elegansuse inhibitory feedback from turning-associated neurons to provide this rapid modulation of mechanosensory processing. By performing high-throughput optogenetic perturbations triggered on behavior, we show that turning-associated neurons SAA, RIV, and/or SMB suppress mechanosensory-evoked reversals during turns. We find that activation of the gentle-touch mechanosensory neurons or of any of the interneurons AIZ, RIM, AIB, and AVE during a turn is less likely to evoke a reversal than activation during forward movement. Inhibiting neurons SAA, RIV, and SMB during a turn restores the likelihood with which mechanosensory activation evokes reversals. Separately, activation of premotor interneuron AVA evokes reversals regardless of whether the animal is turning or moving forward. We therefore propose that inhibitory signals from SAA, RIV, and/or SMB gate mechanosensory signals upstream of neuron AVA. We conclude thatC.elegansrely on inhibitory feedback from the motor circuit to modulate its response to sensory stimuli on fast timescales. This need for motor signals in sensory processing may explain the ubiquity in many organisms of motor-related neural activity patterns seen across the brain, including in sensory processing areas. 
    more » « less
  4. null (Ed.)
    Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3’s processes. Further, we traced back the processes of DE-3’s presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all the behaviors were widely distributed over DE-3’s branches, yet that functional clusters were different during (fictive) swimming vs. crawling. 
    more » « less
  5. ABSTRACT Pectoral fins play a crucial role in fish locomotion. Despite fishes living in complex fluid environments that exist in rivers and tidal flows, the role of the pectoral fins in navigating turbulent flows is not well understood. This study investigated the kinematics and muscle activity of pectoral fins in rainbow trout as they held station in the unsteady flows behind a D-section cylinder. We observed two distinct pectoral fin behaviors, one during braking and the other during Kármán gaiting. These behaviors were correlated to whole-body movements in response to the hydrodynamic conditions of specific regions in the cylinder wake. Sustained fin extensions during braking, where the fin was held out to maintain its position away from the body and against the flow, were associated with the cessation of forward body velocity, where the fish avoided the suction region directly downstream of the cylinder. Transient fin extensions and retractions during Kármán gaiting controlled body movements in the cross-stream direction. These two fin behaviors had different patterns of muscle activity. All braking events required recruitment from both the abductor and adductor musculature to actively extend a pectoral fin. In contrast, over 50% of fin extension movements during Kármán gaiting proceed in the absence of muscle activity. We reveal that in unsteady fluid environments, pectoral fin movements are the result of a complex combination of passive and active mechanisms that deviate substantially from canonical labriform locomotion, the implications of which await further work on the integration of sensory and motor systems. 
    more » « less