skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Anatomy and activity patterns in a multifunctional motor neuron and its surrounding circuits
Dorsal Excitor motor neuron DE-3 in the medicinal leech plays three very different dynamical roles in three different behaviors. Without rewiring its anatomical connectivity, how can a motor neuron dynamically switch roles to play appropriate roles in various behaviors? We previously used voltage-sensitive dye imaging to record from DE-3 and most other neurons in the leech segmental ganglion during (fictive) swimming, crawling, and local-bend escape (Tomina and Wagenaar, 2017). Here, we repeated that experiment, then re-imaged the same ganglion using serial blockface electron microscopy and traced DE-3’s processes. Further, we traced back the processes of DE-3’s presynaptic partners to their respective somata. This allowed us to analyze the relationship between circuit anatomy and the activity patterns it sustains. We found that input synapses important for all the behaviors were widely distributed over DE-3’s branches, yet that functional clusters were different during (fictive) swimming vs. crawling.  more » « less
Award ID(s):
2014862
PAR ID:
10250907
Author(s) / Creator(s):
; ; ; ; ; ;
Date Published:
Journal Name:
eLife
Volume:
10
ISSN:
2050-084X
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. null (Ed.)
    The American lobster, Homarus americanus, cardiac neuromuscular system is controlled by the cardiac ganglion (CG), a central pattern generator consisting of four premotor and five motor neurons. Here, we show that the premotor and motor neurons can establish independent bursting patterns when decoupled by a physical ligature. We also show that mRNA encoding myosuppressin, a cardioactive neuropeptide, is produced within the CG. We thus asked whether myosuppressin modulates the decoupled premotor and motor neurons, and if so, how this modulation might underlie the role(s) that these neurons play in myosuppressin’s effects on ganglionic output. Although myosuppressin exerted dose-dependent effects on burst frequency and duration in both premotor and motor neurons in the intact CG, its effects on the ligatured ganglion were more complex, with different effects and thresholds on the two types of neurons. These data suggest that the motor neurons are more important in determining the changes in frequency of the CG elicited by low concentrations of myosuppressin, whereas the premotor neurons have a greater impact on changes elicited in burst duration. A single putative myosuppressin receptor (MSR-I) was previously described from the Homarus nervous system. We identified four additional putative MSRs (MSR-II–V) and investigated their individual distributions in the CG premotor and motor neurons using RT-PCR. Transcripts for only three receptors (MSR-II–IV) were amplified from the CG. Potential differential distributions of the receptors were observed between the premotor and motor neurons; these differences may contribute to the distinct physiological responses of the two neuron types to myosuppressin. NEW & NOTEWORTHY Premotor and motor neurons of the Homarus americanus cardiac ganglion (CG) are normally electrically and chemically coupled, and generate rhythmic bursting that drives cardiac contractions; we show that they can establish independent bursting patterns when physically decoupled by a ligature. The neuropeptide myosuppressin modulates different aspects of the bursting pattern in these neuron types to determine the overall modulation of the intact CG. Differential distribution of myosuppressin receptors may underlie the observed responses to myosuppressin. 
    more » « less
  2. Mechanosensitive PIEZO ion channels are evolutionarily conserved proteins that are widely expressed in neuronal and muscular tissues. This study explores the role of the mechanoreceptor PEZO-1 in the body wall muscles of Caenorhabditis elegans, focusing on its influence on two locomotor behaviors, swimming and crawling. Using confocal imaging, we reveal that PEZO-1 localizes to the sarcolemma and plays a crucial role in modulating calcium dynamics that are important for muscle contraction. When we knocked down pezo-1 expression in striated muscles with RNA interference, calcium levels in head and tail muscles increased. While heightened, the overall trajectory of the calcium signal during the crawl cycle remained the same. While downregulation of pezo-1 led to an increase in crawling speed, it caused a reduction in swimming speed. Reduction in pezo-1 expression also resulted in the increased activation of the ventral tail muscles, and a disruption of dorsoventral movement asymmetry, a critical feature that enables propulsion in water. These alterations were correlated with impaired swimming posture and path curvature, suggesting that PEZO-1 has different functions during swimming and crawling. 
    more » « less
  3. Abstract Many species in the tunicate family Molgulidae have independently lost their swimming larval form and instead develop as tailless, immotile larvae. These larvae do not develop structures that are essential for swimming such as the notochord, otolith, and tail muscles. However, little is known about neural development in these nonswimming larvae. Here, we studied the patterning of the Motor Ganglion (MG) ofMolgula occulta, a nonswimming species. We found that spatial patterns of MG neuron regulators in this species are conserved, compared with species with swimming larvae, suggesting that the gene networks regulating their expression are intact despite the loss of swimming. However, expression of the key motor neuron regulatory geneEbf (Collier/Olf/EBF)was reduced in the developing MG ofM. occultawhen compared with molgulid species with swimming larvae. This was corroborated by measuring allele‐specific expression ofEbfin hybrid embryos from crosses ofM. occultawith the swimming speciesM. oculata. Heterologous reporter construct assays in the model tunicate speciesCiona robustarevealed a specificcis‐regulatory sequence change that reduces expression ofEbfin the MG, but not in other cells. Taken together, these data suggest that MG neurons are still specified inM. occultalarvae, but their differentiation might be impaired due to reduction ofEbfexpression levels. 
    more » « less
  4. Conserved transcription factors termed “terminal selectors” regulate neuronal sub-type specification and differentiation through combinatorial transcriptional regulation of terminal differentiation genes. The unique combinations of terminal differentiation gene products in turn contribute to the functional identities of each neuron. One well-characterized terminal selector is COE (Collier/Olf/Ebf), which has been shown to activate cholinergic gene batteries in C. elegans motor neurons. However, its functions in other metazoans, particularly chordates, is less clear. Here we show that the sole COE ortholog in the non-vertebrate chordate Ciona robusta , Ebf, controls the expression of the cholinergic locus VAChT/ChAT in a single dorsal interneuron of the larval Motor Ganglion, which is presumed to be homologous to the vertebrate spinal cord. We propose that, while the function of Ebf as a regulator of cholinergic neuron identity conserved across bilaterians, its exact role may have diverged in different cholinergic neuron subtypes (e.g., interneurons vs. motor neurons) in chordate-specific motor circuits. 
    more » « less
  5. ABSTRACT PurposeAmphetamine (AMPH) increases locomotor activities in animals, and the locomotor response to AMPH is further modulated by caloric deficits such as food deprivation and restriction. The increment in locomotor activity regulated by AMPH‐caloric deficit concomitance can be further modulated by varying feeding schedules (e.g., acute and chronic food deprivation and acute feeding after chronic food deprivation). However, the effects of different feeding schedules on AMPH‐induced locomotor activity are yet to be explicated. Here, we have explored the stimulatory responses of acutely administered D‐amphetamine in locomotion under systematically varying feeding states (fed/sated and food deprivation) and schedules (chronic and acute) in zebrafish larvae. MethodWe exposed wild‐type and transgenic [Tg(mnx1:GCaMP5)] zebrafish larvae to 0.7 µM concentration of AMPH and measured swimming activity and spinal motor neuron activity in vivo in real time. The analysis involved time‐elapsed and cumulative manner pre‐ and post‐AMPH treatment in four different caloric states including acute and chronic schedules of feeding and hunger. Both locomotor and motor neuron activities were compared in all four states in both fish lines. FindingsOur results show that locomotion and motor neuron activity increased in both chronic and acute food deprivation post‐AMPH treatment cumulatively. A steady increase in locomotion was observed in acute food deprivation compared to an immediate abrupt increase in chronic food‐deprivation state. The ad libitum‐fed larvae exhibited a moderate increase both in locomotion and motor neuron activity. Conversely to all other caloric states, food‐sated (acute feeding after chronic food deprivation) larvae moved moderately less and exhibited a mild decrease in motor neuron activity after AMPH treatment. ConclusionThese results reveal the importance of cohesive effects of feeding schedule and AMPH treatment by revealing the changes in stimulatory characteristics of AMPH on locomotion and motor neuron activity in acute and chronic feeding states. 
    more » « less