ObjectiveTo examine the impact of increased body mass index (BMI) on (1) tracheotomy timing and (2) short‐term surgical complications requiring a return to the operating room and 30‐day mortality utilizing data from the Multi‐Institutional Study on Tracheotomy (MIST). MethodsA retrospective analysis of patients from the MIST database who underwent surgical or percutaneous tracheotomy between 2013 and 2016 at eight institutions was completed. Unadjusted and adjusted logistic regression analyses were used to assess the impact of obesity on tracheotomy timing and complications. ResultsAmong the 3369 patients who underwent tracheotomy, 41.0% were obese and 21.6% were morbidly obese. BMI was associated with higher rates of prolonged intubation prior to tracheotomy accounting for comorbidities, indication for tracheotomy, institution, and type of tracheostomy (p = 0.001). Morbidly obese patients (BMI ≥35 kg/m2) experienced a longer duration of intubation compared with patients with a normal BMI (median days intubated [IQR 25%–75%]: 11.0 days [7–17 days] versus 9.0 days [5–14 days];p < 0.001) but did not have statistically higher rates of return to the operating room within 30 days (p = 0.12) or mortality (p = 0.90) on multivariable analysis. This same finding of prolonged intubation was not seen in overweight, nonobese patients when compared with normal BMI patients (median days intubated [IQR 25%–75%]: 10.0 days [6–15 days] versus 10.0 days [6–15 days];p = 0.36). ConclusionBMI was associated with increased duration of intubation prior to tracheotomy. Although morbidly obese patients had a longer duration of intubation, there were no differences in return to the operating room or mortality within 30 days. Level of Evidence3Laryngoscope, 134:4674–4681, 2024 
                        more » 
                        « less   
                    
                            
                            Artificial intelligence augmented home sleep apnea testing device study (AISAP study)
                        
                    
    
            Study objectiveThis study aimed to prospectively validate the performance of an artificially augmented home sleep apnea testing device (WVU-device) and its patented technology. MethodologyThe WVU-device, utilizing patent pending (US 20210001122A) technology and an algorithm derived from cardio-pulmonary physiological parameters, comorbidities, and anthropological information was prospectively compared with a commercially available and Center for Medicare and Medicaid Services (CMS) approved home sleep apnea testing (HSAT) device. The WVU-device and the HSAT device were applied on separate hands of the patient during a single night study. The oxygen desaturation index (ODI) obtained from the WVU-device was compared to the respiratory event index (REI) derived from the HSAT device. ResultsA total of 78 consecutive patients were included in the prospective study. Of the 78 patients, 38 (48%) were women and 9 (12%) had a Fitzpatrick score of 3 or higher. The ODI obtained from the WVU-device corelated well with the HSAT device, and no significant bias was observed in the Bland-Altman curve. The accuracy for ODI > = 5 and REI > = 5 was 87%, for ODI> = 15 and REI > = 15 was 89% and for ODI> = 30 and REI of > = 30 was 95%. The sensitivity and specificity for these ODI /REI cut-offs were 0.92 and 0.78, 0.91 and 0.86, and 0.94 and 0.95, respectively. ConclusionThe WVU-device demonstrated good accuracy in predicting REI when compared to an approved HSAT device, even in patients with darker skin tones. 
        more » 
        « less   
        
    
                            - Award ID(s):
- 2125872
- PAR ID:
- 10538722
- Editor(s):
- Grewal, Harpreet Singh
- Publisher / Repository:
- PLOS
- Date Published:
- Journal Name:
- PLOS ONE
- Volume:
- 19
- Issue:
- 5
- ISSN:
- 1932-6203
- Page Range / eLocation ID:
- e0303076
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
- 
            
- 
            Background:Sleep disturbances are associated with adverse perinatal outcomes. Thus, it is necessary to understand the continuous patterns of sleep during pregnancy and how moderators such as maternal age and pre-pregnancy body mass index impact sleep. Objective:This study aimed to examine the continuous changes in sleep parameters objectively (i.e. sleep stages, total sleep time, and awake time) in pregnant women and to describe the impact of maternal age and/or pre-pregnancy body mass index as moderators of these objective sleep parameters. Design:This was a longitudinal observational design. Methods:Seventeen women with a singleton pregnancy participated in this study. Mixed model repeated measures were used to describe weekly patterns, while aggregated changes describe these three pregnancy periods (10–19, 20–29, and 30–39 gestational weeks). Results:For the weekly patterns, we found significantly decreased deep (1.26 ± 0.18 min/week, p < 0.001), light (0.72 ± 0.37 min/week, p = 0.05), and total sleep time (1.56 ± 0.47 min/week, p < 0.001) as well as increased awake time (1.32 ± 0.34 min/week, p < 0.001). For the aggregated changes, we found similar patterns to weekly changes. Women (⩾30 years) had an even greater decrease in deep sleep (1.50 ± 0.22 min/week, p < 0.001) than those younger (0.84 ± 0.29 min/week, p = 0.04). Women who were both overweight/obese and ⩾30 years experienced an increase in rapid eye movement sleep (0.84 ± 0.31 min/week, p = 0.008), but those of normal weight (<30 years) did not. Conclusion:This study appears to be the first to describe continuous changes in sleep parameters during pregnancy at home. Our study provides preliminary evidence that sleep parameters could be potential non-invasive physiological markers predicting perinatal outcomes.more » « less
- 
            Abstract BackgroundAtrial fibrillation (AF) is often asymptomatic and thus under-observed. Given the high risks of stroke and heart failure among patients with AF, early prediction and effective management are crucial. Importantly, obstructive sleep apnea is highly prevalent among AF patients (60–90%); therefore, electrocardiogram (ECG) analysis from polysomnography (PSG), a standard diagnostic tool for subjects with suspected sleep apnea, presents a unique opportunity for the early prediction of AF. Our goal is to identify individuals at a high risk of developing AF in the future from a single-lead ECG recorded during standard PSGs. MethodsWe analyzed 18,782 single-lead ECG recordings from 13,609 subjects at Massachusetts General Hospital, identifying AF presence using ICD-9/10 codes in medical records. Our dataset comprises 15,913 recordings without a medical record for AF and 2,056 recordings from patients who were first diagnosed with AF between 1 day to 15 years after the PSG recording. The PSG data were partitioned into training, validation, and test cohorts. In the first phase, a signal quality index (SQI) was calculated in 30-second windows and those with SQI<0.95 were removed. From each remaining window, 150 hand-crafted features were extracted from time, frequency, time-frequency domains, and phase-space reconstructions of the ECG. A compilation of 12 statistical features summarized these window-specific features per recording, resulting in 1,800 features. We then updated a pre-trained deep neural network and data from the PhysioNet Challenge 2021 using transfer-learning to discriminate between recordings with and without AF using the same Challenge data. The model was applied to the PSG ECGs in 16-second windows to generate the probability of AF for each window. From the resultant probability sequence, 13 statistical features were extracted. Subsequently, we trained a shallow neural network to predict future AF using the extracted ECG and probability features. ResultsOn the test set, our model demonstrated a sensitivity of 0.67, specificity of 0.81, and precision of 0.3 for predicting AF. Further, survival analysis for AF outcomes, using the log-rank test, revealed a hazard ratio of 8.36 (p-value of 1.93 × 10−52). ConclusionsOur proposed ECG analysis method, utilizing overnight PSG data, shows promise in AF prediction despite a modest precision indicating the presence of false positive cases. This approach could potentially enable low-cost screening and proactive treatment for high-risk patients. Ongoing refinement, such as integrating additional physiological parameters could significantly reduce false positives, enhancing its clinical utility and accuracy.more » « less
- 
            The ability to assess sleep at home, capture sleep stages, and detect the occurrence of apnea (without on-body sensors) simply by analyzing the radio waves bouncing off people's bodies while they sleep is quite powerful. Such a capability would allow for longitudinal data collection in patients' homes, informing our understanding of sleep and its interaction with various diseases and their therapeutic responses, both in clinical trials and routine care. In this article, we develop an advanced machine learning algorithm for passively monitoring sleep and nocturnal breathing from radio waves reflected off people while asleep. Validation results in comparison with the gold standard (i.e., polysomnography) (n=849) demonstrate that the model captures the sleep hypnogram (with an accuracy of 81% for 30-second epochs categorized into Wake, Light Sleep, Deep Sleep, or REM), detects sleep apnea (AUROC = 0.88), and measures the patient's Apnea-Hypopnea Index (ICC=0.95; 95% CI = [0.93, 0.97]). Notably, the model exhibits equitable performance across race, sex, and age. Moreover, the model uncovers informative interactions between sleep stages and a range of diseases including neurological, psychiatric, cardiovascular, and immunological disorders. These findings not only hold promise for clinical practice and interventional trials but also underscore the significance of sleep as a fundamental component in understanding and managing various diseases.more » « less
- 
            Abstract Objective:Whole genome sequencing (WGS) can help identify transmission of pathogens causing healthcare-associated infections (HAIs). However, the current gold standard of short-read, Illumina-based WGS is labor and time intensive. Given recent improvements in long-read Oxford Nanopore Technologies (ONT) sequencing, we sought to establish a low resource approach providing accurate WGS-pathogen comparison within a time frame allowing for infection prevention and control (IPC) interventions. Methods:WGS was prospectively performed on pathogens at increased risk of potential healthcare transmission using the ONT MinION sequencer with R10.4.1 flow cells and Dorado basecaller. Potential transmission was assessed via Ridom SeqSphere+ for core genome multilocus sequence typing and MINTyper for reference-based core genome single nucleotide polymorphisms using previously published cutoff values. The accuracy of our ONT pipeline was determined relative to Illumina. Results:Over a six-month period, 242 bacterial isolates from 216 patients were sequenced by a single operator. Compared to the Illumina gold standard, our ONT pipeline achieved a mean identity score of Q60 for assembled genomes, even with a coverage rate as low as 40×. The mean time from initiating DNA extraction to complete analysis was 2 days (IQR 2–3.25 days). We identified five potential transmission clusters comprising 21 isolates (8.7% of sequenced strains). Integrating ONT with epidemiological data, >70% (15/21) of putative transmission cluster isolates originated from patients with potential healthcare transmission links. Conclusions:Via a stand-alone ONT pipeline, we detected potentially transmitted HAI pathogens rapidly and accurately, aligning closely with epidemiological data. Our low-resource method has the potential to assist in IPC efforts.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
 
                                    