Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Abstract Color vision deficiency (CVD) affects a significant portion of the population, yet its impact is often overlooked in medical education, especially in visually demanding specialties like dermatology, pathology, and radiology. In this study, we investigated the potential of ChatGPT to comprehend CVD-simulated images in image-based diagnostic tasks. Notably, the model successfully adapted its diagnostic reasoning to match CVD-modified color perception while preserving high prediction accuracy. These findings highlight the potential of using ChatGPT to foster more inclusive learning environments for individuals with CVD in visually intensive medical specialties.more » « less
- 
            Grewal, Harpreet Singh (Ed.)Study objectiveThis study aimed to prospectively validate the performance of an artificially augmented home sleep apnea testing device (WVU-device) and its patented technology. MethodologyThe WVU-device, utilizing patent pending (US 20210001122A) technology and an algorithm derived from cardio-pulmonary physiological parameters, comorbidities, and anthropological information was prospectively compared with a commercially available and Center for Medicare and Medicaid Services (CMS) approved home sleep apnea testing (HSAT) device. The WVU-device and the HSAT device were applied on separate hands of the patient during a single night study. The oxygen desaturation index (ODI) obtained from the WVU-device was compared to the respiratory event index (REI) derived from the HSAT device. ResultsA total of 78 consecutive patients were included in the prospective study. Of the 78 patients, 38 (48%) were women and 9 (12%) had a Fitzpatrick score of 3 or higher. The ODI obtained from the WVU-device corelated well with the HSAT device, and no significant bias was observed in the Bland-Altman curve. The accuracy for ODI > = 5 and REI > = 5 was 87%, for ODI> = 15 and REI > = 15 was 89% and for ODI> = 30 and REI of > = 30 was 95%. The sensitivity and specificity for these ODI /REI cut-offs were 0.92 and 0.78, 0.91 and 0.86, and 0.94 and 0.95, respectively. ConclusionThe WVU-device demonstrated good accuracy in predicting REI when compared to an approved HSAT device, even in patients with darker skin tones.more » « less
- 
            BackgroundChatGPT showcases exceptional conversational capabilities and extensive cross-disciplinary knowledge. In addition, it can perform multiple roles in a single chat session. This unique multirole-playing feature positions ChatGPT as a promising tool for exploring interdisciplinary subjects. ObjectiveThe aim of this study was to evaluate ChatGPT’s competency in addressing interdisciplinary inquiries based on a case study exploring the opportunities and challenges of chatbot uses in sports rehabilitation. MethodsWe developed a model termed PanelGPT to assess ChatGPT’s competency in addressing interdisciplinary topics through simulated panel discussions. Taking chatbot uses in sports rehabilitation as an example of an interdisciplinary topic, we prompted ChatGPT through PanelGPT to role-play a physiotherapist, psychologist, nutritionist, artificial intelligence expert, and athlete in a simulated panel discussion. During the simulation, we posed questions to the panel while ChatGPT acted as both the panelists for responses and the moderator for steering the discussion. We performed the simulation using ChatGPT-4 and evaluated the responses by referring to the literature and our human expertise. ResultsBy tackling questions related to chatbot uses in sports rehabilitation with respect to patient education, physiotherapy, physiology, nutrition, and ethical considerations, responses from the ChatGPT-simulated panel discussion reasonably pointed to various benefits such as 24/7 support, personalized advice, automated tracking, and reminders. ChatGPT also correctly emphasized the importance of patient education, and identified challenges such as limited interaction modes, inaccuracies in emotion-related advice, assurance of data privacy and security, transparency in data handling, and fairness in model training. It also stressed that chatbots are to assist as a copilot, not to replace human health care professionals in the rehabilitation process. ConclusionsChatGPT exhibits strong competency in addressing interdisciplinary inquiry by simulating multiple experts from complementary backgrounds, with significant implications in assisting medical education.more » « less
- 
            Abstract AimsAge-related changes in cardiac structure and function are well recognized and make the clinical determination of abnormal left ventricular (LV) diastolic dysfunction (LVDD) particularly challenging in the elderly. We investigated whether a deep neural network (DeepNN) model of LVDD, previously validated in a younger cohort, can be implemented in an older population to predict incident heart failure (HF). Methods and resultsA previously developed DeepNN was tested on 5596 older participants (66–90 years; 57% female; 20% Black) from the Atherosclerosis Risk in Communities Study. The association of DeepNN predictions with HF or all-cause death for the American College of Cardiology Foundation/American Heart Association Stage A/B (n = 4054) and Stage C/D (n = 1542) subgroups was assessed. The DeepNN-predicted high-risk compared with the low-risk phenogroup demonstrated an increased incidence of HF and death for both Stage A/B and Stage C/D (log-rank P < 0.0001 for all). In multi-variable analyses, the high-risk phenogroup remained an independent predictor of HF and death in both Stages A/B {adjusted hazard ratio [95% confidence interval (CI)] 6.52 [4.20–10.13] and 2.21 [1.68–2.91], both P < 0.0001} and Stage C/D [6.51 (4.06–10.44) and 1.03 (1.00–1.06), both P < 0.0001], respectively. In addition, DeepNN showed incremental value over the 2016 American Society of Echocardiography/European Association of Cardiovascular Imaging (ASE/EACVI) guidelines [net re-classification index, 0.5 (CI 0.4–0.6), P < 0.001; C-statistic improvement, DeepNN (0.76) vs. ASE/EACVI (0.70), P < 0.001] overall and maintained across stage groups. ConclusionDespite training with a younger cohort, a deep patient-similarity–based learning framework for assessing LVDD provides a robust prediction of all-cause death and incident HF for older patients.more » « less
- 
            Abstract The lncATLAS database quantifies the relative cytoplasmic versus nuclear abundance of long non-coding RNAs (lncRNAs) observed in 15 human cell lines. The literature describes several machine learning models trained and evaluated on these and similar datasets. These reports showed moderate performance, e.g. 72–74% accuracy, on test subsets of the data withheld from training. In all these reports, the datasets were filtered to include genes with extreme values while excluding genes with values in the middle range and the filters were applied prior to partitioning the data into training and testing subsets. Using several models and lncATLAS data, we show that this ‘middle exclusion’ protocol boosts performance metrics without boosting model performance on unfiltered test data. We show that various models achieve only about 60% accuracy when evaluated on unfiltered lncRNA data. We suggest that the problem of predicting lncRNA subcellular localization from nucleotide sequences is more challenging than currently perceived. We provide a basic model and evaluation procedure as a benchmark for future studies of this problem.more » « less
- 
            Background: Long non-coding Ribonucleic Acids (lncRNAs) can be localized to different cellular compartments, such as the nuclear and the cytoplasmic regions. Their biological functions are influenced by the region of the cell where they are located. Compared to the vast number of lncRNAs, only a relatively small proportion have annotations regarding their subcellular localization. It would be helpful if those few annotated lncRNAs could be leveraged to develop predictive models for localization of other lncRNAs. Methods: Conventional computational methods use q-mer profiles from lncRNA sequences and train machine learning models such as support vector machines and logistic regression with the profiles. These methods focus on the exact q-mer. Given possible sequence mutations and other uncertainties in genomic sequences and their role in biological function, a consideration of these variabilities might improve our ability to model lncRNAs and their localization. Thus, we build on inexact q-mers and use machine learning/deep learning techniques to study three specific problems in lncRNA subcellular localization, namely, prediction of lncRNA localization using inexact q-mers, the issue of whether lncRNA localization is cell-type-specific, and the notion of switching (lncRNA) genes. Results: We performed our analysis using data on lncRNA localization across 15 cell lines. Our results showed that using inexact q-mers (with q = 6) can improve the lncRNA localization prediction performance compared to using exact q-mers. Further, we showed that lncRNA localization, in general, is not cell-line-specific. We also identified a category of LncRNAs which switch cellular compartments between different cell lines (we call them switching lncRNAs). These switching lncRNAs complicate the problem of predicting lncRNA localization using machine learning models, showing that lncRNA localization is still a major challenge.more » « lessFree, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available August 1, 2026
- 
            Free, publicly-accessible full text available February 3, 2026
- 
            Free, publicly-accessible full text available December 3, 2025
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
