- Award ID(s):
- 1952718
- PAR ID:
- 10538784
- Editor(s):
- Endara, María José
- Publisher / Repository:
- Frontiers Media SA
- Date Published:
- Journal Name:
- Frontiers in ecology and evolution
- ISSN:
- 2296-701X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Introduction Plants and their insect herbivores represent a large fraction of the species in Amazonian forests and are often directly implicated in the origin and maintenance of biodiversity at local and regional scales. How these interactions may change over geographic distance is unknown because very few studies have investigated the herbivore fauna and defense chemicals of any host plant species at multiple sites in tropical forests. One hypothesis, the Geographic Mosaic Theory of Coevolution, predicts that if herbivore assemblages turn over in different parts of a plant’s range, then plant defense chemicals should also change, reflecting local selection pressures. Methods We tested this theory by studying 12 species of Protium (Burseraceae) trees that occur in both Iquitos, Peru, and Manaus, Brazil, in rainforests separated by 1500 km. We surveyed all insects observed directly feeding on the plants in both locations for 48 weeks in Manaus and 64 weeks in Iquitos. We analyzed the secondary metabolites in the leaves of all species in both locations using GC/MS and HPLC. Results and Discussion Although in both locations we found that Protium herbivores were dominated by insects from the orders Hemiptera, Coleoptera and Lepidoptera, we found almost complete turnover in the herbivore species composition in the two sites, and each host plant species had a different assemblage of herbivores in each location. Comparing the phylogenetic beta-diversity, we found low similarity in herbivore phylogenetic relatedness between host plant species in the two locations. However, the secondary metabolites found within a Protium species were similar across the two locations. We found no strong evidence that individuals from a host plant species in Iquitos or Manaus expressed locally-adapted defense chemicals, as individuals from geographic locations did not form clusters when looking at patterns of chemical similarity. These results are not consistent with the Geographic Mosaic Theory of Coevolution. The most intriguing pattern we found was a strong correlation between the diversity of herbivores per host plant species in both locations. We also found that plants with high chemical richness had lower numbers of herbivore species and numbers of total herbivores in both locations. We conclude that high chemical diversity is the most effective strategy for Protium trees to reduce insect herbivore attacks. We speculate that each secondary metabolite is effective at repelling only a few insect herbivores, and that different chemicals are likely effective in different parts of a plants’ geographic range. Future studies should investigate additional locations and additional natural enemies (i.e., fungal pathogens) to test the hypothesis that chemical diversity reduces attack from natural enemies and may explain the ecological and evolutionary success of rainforest trees over time and space.more » « less
-
Plants are often attacked by insects and other herbivores. As a result, they have evolved to defend themselves by producing many different chemicals that are toxic to these pests. As producing each chemical costs energy, individual plants often only produce one type of chemical that is targeted towards their main herbivore. Related species of plants often use the same type of chemical defense so, if a particular herbivore gains the ability to cope with this chemical, it may rapidly become an important pest for the whole plant family. To escape this threat, some plants have gained the ability to produce more than one type of chemical defense. Wallflowers, for example, are a group of plants in the mustard family that produce two types of toxic chemicals: mustard oils, which are common in most plants in this family; and cardenolides, which are an innovation of the wallflowers, and which are otherwise found only in distantly related plants such as foxglove and milkweed. The combination of these two chemical defenses within the same plant may have allowed the wallflowers to escape attacks from their main herbivores and may explain why the number of wallflower species rapidly increased within the last two million years. Züst et al. have now studied the diversity of mustard oils and cardenolides present in many different species of wallflower. This analysis revealed that almost all of the tested wallflower species produced high amounts of both chemical defenses, while only one species lacked the ability to produce cardenolides. The levels of mustard oils had no relation to the levels of cardenolides in the tested species, which suggests that the regulation of these two defenses is not linked. Furthermore, Züst et al. found that closely related wallflower species produced more similar cardenolides, but less similar mustard oils, to each other. This suggests that mustard oils and cardenolides have evolved independently in wallflowers and have distinct roles in the defense against different herbivores. The evolution of insect resistance to pesticides and other toxins is an important concern for agriculture. Applying multiple toxins to crops at the same time is an important strategy to slow the evolution of resistance in the pests. The findings of Züst et al. describe a system in which plants have naturally evolved an equivalent strategy to escape their main herbivores. Understanding how plants produce multiple chemical defenses, and the costs involved, may help efforts to breed crop species that are more resistant to herbivores and require fewer applications of pesticides.more » « less
-
Abstract Understanding the circumstances under which insect herbivores will adopt a novel host plant is a longstanding question in basic and applied ecology. While geographic variation in host use can arise through differences in both herbivore preference and plant characteristics, there is a tendency to attribute geographic variation in host use to regional differences in herbivore preference alone. This is especially true for herbivores specialized to one or a few plant species. We compared how geographic variation in herbivore preference and host plant origin shape regional differences in host plant use by the specialized herbivore,
Euphydryas phaeton . In parts of its range,E. phaeton uses only a native host,Chelone glabra , while in others, it also uses an introduced host,Plantago lanceolata . We offered female butterflies from each region the non-native host plant sourced from both regions and compared their oviposition behavior. The non-native host was almost universally rejected by butterflies in the region where only the native plant is used. In the region where butterflies use both hosts, females accepted non-native plants from their natal region twice as often as non-native plants from the other region where they are not used. Acceptance differed substantially among individual butterflies within regions but not among plants within regions. Thus, both individual preference and regional differences in both the insect and non-native host contributed to the geographic variation in different ways. These results highlight that, in addition to herbivore preference, regional differences in perceived plant suitability may be an important driver of diet breadth. -
Abstract Plant defense chemistry is often hypothesized to drive ecological and evolutionary success in diverse tropical forests, yet detailed characterizations of plant secondary metabolites in tropical plants are logistically challenging. Here, we explore a new integrative approach that combines visible‐to‐shortwave infrared (VSWIR) spectral reflectance data with detailed plant metabolomics data from 19
Protium (Burseraceae) tree species. Building on the discovery that differentProtium species have unique chemistries yet share many secondary metabolites, we devised a method to test for associations between metabolites and VSWIR spectral data. Given species‐level variation in metabolite abundance, we correlated the concentration of particular chemicals with the reflectance of the spectral bands in a wavelength band per secondary metabolite matrix. We included 45 metabolites that were shared by at least 5Protium species and correlated their per‐species foliar abundances against each one of 210 wavelength bands of field‐measured VSWIR spectra. Finally, we tested whether classes of similar metabolites showed similar relationships with spectral patterns. We found that many secondary metabolites yielded strong correlations with VSWIR spectra ofProtium . Furthermore, importantProtium metabolite classes such as procyanidins (condensed tannins) and phytosterols were grouped together in a hierarchical clustering analysis (Ward’s algorithm), confirming similarity in their associations with plant spectral patterns. We also found a significant correlation in the phenolics content between juvenile and canopy trees of the same species, suggesting that species‐level variation in defense chemistry is consistent across life stages and geographic distribution. We conclude that the integration of spectral and metabolic approaches could represent a powerful and economical method to characterize important aspects of tropical plant defense chemistry. -
Abstract Defense against natural enemies constitutes an important driver of herbivore host range evolution in the wild. Populations of the Baltimore checkerspot butterfly,
Euphydryas phaeton (Nymphalidae), have recently incorporated an exotic plant,Plantago lanceolata (Plantaginaceae), into their dietary range. To understand the tritrophic consequences of utilizing this exotic host plant, we examined immune performance, chemical defense, and interactions with a natural entomopathogen (Junonia coenia densovirus,Parvoviridae ) across wild populations of this specialist herbivore. We measured three immune parameters, sequestration of defensive iridoid glycosides (IGs), and viral infection load in field‐collected caterpillars using eitherP .lanceolata or a native plant,Chelone glabra (Plantaginaceae). We found that larvae using the exotic plant exhibited reduced immunocompetence, compositional differences in IG sequestration, and higher in situ viral burdens compared to those using the native plant. On both host plants, high IG sequestration was associated with reduced hemocyte concentration in the larval hemolymph, providing the first evidence of incompatibility between sequestered chemical defenses and the immune response (i.e., the “vulnerable host” hypothesis) from a field‐based study. However, despite this negative relationship between IG sequestration and cellular immunity, caterpillars with greater sequestration harbored lower viral loads. While survival of virus‐infected individuals decreased with increasing viral burden, it ultimately did not differ between the exotic and native plants. These results provide evidence that: (1) phytochemical sequestration may contribute to defense against pathogens even when immunity is compromised and (2) herbivore persistence on exotic plant species may be facilitated by sequestration and its role in defense against natural enemies.