Abstract Climate change is leading to global increases in extreme events, such as drought, that threaten the persistence of freshwater biodiversity. Identification and management of drought refuges, areas that promote resistance and resilience to drought, will be critical for preserving and recovering aquatic biodiversity in the face of climate change and increasing human water use. Although several reviews have addressed the effects of droughts and highlighted the role of refuges, a need remains on how to identify functional refuges that can be used in a drought management framework to support fish assemblages. We synthesize literature on drought refuges and propose a framework to identify and manage functional refuges that incorporate species physiological tolerances, behaviours and life‐history strategies. Stream pools, perennial reaches and off‐channel habitat were identified as important drought refuges for fish. The ability of refuges to improve species resistance and resilience to drought requires careful consideration of the biology of the target species and targeted management to promote persistence, quality and connectivity of refuges. Case studies illustrate that management of drought refuges can be challenging because of competing demands for water, incomplete knowledge of ecological requirements for target species and the increasing occurrence of multi‐year droughts. Climate adaptation is increasingly important, and drought refuges can increase fish resistance and resilience to climate‐related drought across the riverscape.
more »
« less
Restored off‐channel pond habitats create thermal regime diversity and refuges within a Mediterranean‐climate watershed
Cool‐water habitats provide increasingly vital refuges for cold‐water fish living on the margins of their historical ranges; consequently, efforts to enhance or create cool‐water habitat are becoming a major focus of river restoration practices. However, the effectiveness of restoration projects for providing thermal refuge and creating diverse temperature regimes at the watershed scale remains unclear. In the Klamath River in northern California, the Karuk Tribe Fisheries Program, the Mid‐Klamath Watershed Council, and the U.S. Forest Service constructed a series of off‐channel ponds that recreate floodplain habitat and support juvenile coho salmon (Oncorhynchus kisutch) and steelhead (O. mykiss) along the Klamath River and its tributaries. We instrumented these ponds and applied multivariate autoregressive time series models of fine‐scale temperature data from ponds, tributaries, and the mainstem Klamath River to assess how off‐channel ponds contributed to thermal regime diversity and thermal refuge habitat in the Klamath riverscape. Our analysis demonstrated that ponds provide diverse thermal habitats that are significantly cooler than creek or mainstem river habitats, even during severe drought. Wavelet analysis of long‐term (10 years) temperature data indicated that thermal buffering (i.e. dampening of diel variation) increased over time but was disrupted by drought conditions in 2021. Our analysis demonstrates that in certain situations, human‐made off‐channel ponds can increase thermal diversity in modified riverscapes even during drought conditions, potentially benefiting floodplain‐dependent cold‐water species. Restoration actions that create and maintain thermal regime diversity and thermal refuges will become an essential tool to conserve biodiversity in climate‐sensitive watersheds.
more »
« less
- Award ID(s):
- 2047324
- PAR ID:
- 10538797
- Publisher / Repository:
- Society for Ecological Restoration
- Date Published:
- Journal Name:
- Restoration Ecology
- Volume:
- 32
- Issue:
- 4
- ISSN:
- 1061-2971
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2023 water year (1 Oct 2022 to 30 Sep 2023) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are total organic carbon combustion analyses (Shimadzu Scientific Instruments) of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2024 water year (1 Oct 2023 to 30 Sep 2024) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
The Upper Clark Fork River (UCFR) Long Term Research in Environmental Biology (LTREB) umbrella monitoring project generating these data is conducted separately and complementarily to the 200-million-dollar (USD) superfund project for ecological restoration of the UCFR, associated tributaries, and head water streams including Silver Bow and Warm Springs Creeks. Restoration along the UCFR in western Montana includes removal of metal-laden floodplain soils, lowering of the floodplain to its original elevation, and re-vegetation of over 70 km of the river’s floodplain closest to contaminant sources. The UCFR LTREB project includes bi-weekly water quality monitoring across the first 200 km of the river and its major tributaries along a gradient of heavy metal contamination associated with historic mining. Monitoring includes inorganic phosphorus and nitrogen concentrations, biotic standing stocks, and dissolved and whole-water heavy metal concentrations. The monitoring program began in 2017 with funding extended through 2028. The original analytical intent for these data was to assess the response of river dissolved organic carbon to the floodplain restoration. Data are Aurora Total Organic Carbon combustion analyses of the concentration of organic carbon dissolved in filtered samples of well-mixed river thalweg water. Data are from the 2021 water year (1 Oct 2020 to 30 Sep 2021) from samples collected on the Upper Clark Fork River (USGS HUC 17010201) at project sites distributed along the river from the vicinity of Anaconda to Missoula, Montana, USA.more » « less
-
Abstract In aquatic systems, refuge habitats increase resistance to drying events and maintain populations in disturbed environments. However, reduced water availability and altered flow regimes threaten the function of these habitats. We conducted a capture–mark–recapture study, integrating angler citizen science. Our objectives were to quantify variation in survival of Florida Largemouth BassMicropterus salmoides floridanusin a coastal refuge habitat across seasonal hydrological periods and over 4 years of varying drying severity and to determine the contribution of angler sampling to improving capture probabilities. Apparent survival of Florida Largemouth Bass in the coastal Everglades was highest in wet and drying periods and lowest in dry and reflooding periods. Interannual survival was closely tied to the length of upstream marsh drying, with the lowest observed survival (0.21) during a drought year. The inclusion of angler sampling improved recapture probabilities, suggesting that angler data can supplement standardized electrofishing sampling. Findings show that during short drying events Florida Largemouth Bass survival can be relatively high, with implications for Everglades restoration. Understanding the ability of refuge habitats to buffer populations from drying disturbance is a key component for conservation and restoration, particularly under climate change scenarios.more » « less
An official website of the United States government

