skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Award ID contains: 2047324

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Rivers are efficient corridors for aquatic animals, primarily under the assumption of perennial flow. However, the recognition that river drying is a common and widespread phenomenon requires reexamining animal movement through river networks. Intermittent rivers and ephemeral streams have been overlooked when studying animal movement, even though approximately 60% of the global river network dries. In the present article, we extend the current focus of river ecology by integrating the effects of drying on the movement of aquatic and terrestrial animals. Moreover, we introduce a conceptual model that challenges the current bias, which is focused on perennial waterways, by encompassing animal movement across hydrologic phases (nonflowing, flowing, dry, rewetting) and habitats (aquatic, terrestrial). We discuss their corridor function in conservation and restoration planning and identify emerging research questions. We contend that a more comprehensive and inclusive view of animal movement in dry channels will advance ecological understanding of river networks and respective conservation efforts. 
    more » « less
  2. Abstract Despite its far-reaching implications for conservation and natural resource management, little is known about the color of environmental noise, or the structure of temporal autocorrelation in random environmental variation, in streams and rivers. Here, we analyze the geography, drivers, and timescale-dependence of noise color in streamflow across the U.S. hydrography, using streamflow time series from 7504 gages. We find that daily and annual flows are dominated by red and white spectra respectively, and spatial variation in noise color is explained by a combination of geographic, hydroclimatic, and anthropogenic variables. Noise color at the daily scale is influenced by stream network position, and land use and water management explain around one third of the spatial variation in noise color irrespective of the timescale considered. Our results highlight the peculiarities of environmental variation regimes in riverine systems, and reveal a strong human fingerprint on the stochastic patterns of streamflow variation in river networks. 
    more » « less
  3. Abstract River scientists strive to understand how streamflow regimes vary across space and time because it is fundamental to predicting the impacts of climate change and human activities on riverine ecosystems. Here we tested whether flow periodicity differs between rivers that are regulated or unregulated by large dams, and whether dominant periodicities change over time in response to dam regulation. These questions were addressed by calculating wavelet power at different timescales, ranging from 6 hr to 10 years, across 175 pairs of dam‐regulated and unregulated USGS gages with long‐term discharge data, spanning the conterminous United States. We then focused on eight focal reservoirs with high‐quality and high‐frequency data to examine the spectral signatures of dam‐induced flow alteration and their time‐varying nature. We found that regulation by dams induces changes not only in flow magnitude and variability, but also in the dominant periodicities of a river's flow regime. Our analysis also revealed that dams generally alter multi‐annual and annual periodicity to a higher extent than seasonal or daily periodicity. Based on the focal reservoirs, we illustrate that alteration of flow periodicity is time varying, with dam operations (e.g., daily peaking vs. baseload operation), changes in dam capacity, and environmental policies shifting the relative importance of periodicities over time. Our analysis demonstrates the pervasiveness of human signatures now characterizing the U.S. rivers' flow regimes, and may inform the restoration of environmental periodicity downstream of reservoirs via controlled flow releases—a critical need in light of new damming and dam retrofitting for hydropower globally. 
    more » « less
  4. Abstract A tenet of ecology is that temporal variability in ecological structure and processes tends to decrease with increasing spatial scales (from locales to regions) and levels of biological organization (from populations to communities). However, patterns in temporal variability across trophic levels and the mechanisms that produce them remain poorly understood. Here we analyzed the abundance time series of spatially structured communities (i.e., metacommunities) spanning basal resources to top predators from 355 freshwater sites across three continents. Specifically, we used a hierarchical partitioning method to disentangle the propagation of temporal variability in abundance across spatial scales and trophic levels. We then used structural equation modeling to determine if the strength and direction of relationships between temporal variability, synchrony, biodiversity, and environmental and spatial settings depended on trophic level and spatial scale. We found that temporal variability in abundance decreased from producers to tertiary consumers but did so mainly at the local scale. Species population synchrony within sites increased with trophic level, whereas synchrony among communities decreased. At the local scale, temporal variability in precipitation and species diversity were associated with population variability (linear partial coefficient, β = 0.23) and population synchrony (β = −0.39) similarly across trophic levels, respectively. At the regional scale, community synchrony was not related to climatic or spatial predictors, but the strength of relationships between metacommunity variability and community synchrony decreased systematically from top predators (β = 0.73) to secondary consumers (β = 0.54), to primary consumers (β = 0.30) to producers (β = 0). Our results suggest that mobile predators may often stabilize metacommunities by buffering variability that originates at the base of food webs. This finding illustrates that the trophic structure of metacommunities, which integrates variation in organismal body size and its correlates, should be considered when investigating ecological stability in natural systems. More broadly, our work advances the notion that temporal stability is an emergent property of ecosystems that may be threatened in complex ways by biodiversity loss and habitat fragmentation. 
    more » « less
  5. Stream drying is happening globally, with important ecological and social consequences. Most examples of stream drying come from systems influenced by dam operations or those with highly exploited aquifers. Stream drying is also thought to be driven by anthropogenic climate change; however, examples are surprisingly limited. We explored flow trends from the five recognized Mediterranean‐climate regions of the world with a focus on unregulated (non‐dammed or non‐diverted) streams with long‐term gauge records. We found consistent evidence of decreasing discharge trends, increasing zero‐flow days, and steeper downward discharge trends in smaller basins. Beyond directional trends, many systems have recently undergone shifts in flow state, including some streams that have transitioned from perennial to intermittent flow states. Our analyses provide evidence of stream drying consistent with climate change but also highlight knowledge gaps and challenges in empirically and statistically documenting flow regime shifts. We discuss the myriad consequences of losing flow and propose strategies for improving detection of and adapting to flow change. 
    more » « less
  6. Cool‐water habitats provide increasingly vital refuges for cold‐water fish living on the margins of their historical ranges; consequently, efforts to enhance or create cool‐water habitat are becoming a major focus of river restoration practices. However, the effectiveness of restoration projects for providing thermal refuge and creating diverse temperature regimes at the watershed scale remains unclear. In the Klamath River in northern California, the Karuk Tribe Fisheries Program, the Mid‐Klamath Watershed Council, and the U.S. Forest Service constructed a series of off‐channel ponds that recreate floodplain habitat and support juvenile coho salmon (Oncorhynchus kisutch) and steelhead (O. mykiss) along the Klamath River and its tributaries. We instrumented these ponds and applied multivariate autoregressive time series models of fine‐scale temperature data from ponds, tributaries, and the mainstem Klamath River to assess how off‐channel ponds contributed to thermal regime diversity and thermal refuge habitat in the Klamath riverscape. Our analysis demonstrated that ponds provide diverse thermal habitats that are significantly cooler than creek or mainstem river habitats, even during severe drought. Wavelet analysis of long‐term (10 years) temperature data indicated that thermal buffering (i.e. dampening of diel variation) increased over time but was disrupted by drought conditions in 2021. Our analysis demonstrates that in certain situations, human‐made off‐channel ponds can increase thermal diversity in modified riverscapes even during drought conditions, potentially benefiting floodplain‐dependent cold‐water species. Restoration actions that create and maintain thermal regime diversity and thermal refuges will become an essential tool to conserve biodiversity in climate‐sensitive watersheds. 
    more » « less