skip to main content


This content will become publicly available on May 1, 2025

Title: Intrinsically Multistable Soft Actuator Driven by Mixed‐Mode Snap‐Through Instabilities
Abstract

Actuators utilizing snap‐through instabilities are widely investigated for high‐performance fast actuators and shape reconfigurable structures owing to their rapid response and limited reliance on continuous energy input. However, prevailing approaches typically involve a combination of multiple bistable actuator units and achieving multistability within a single actuator unit still remains an open challenge. Here, a soft actuator is presented that uses shape memory alloy (SMA) and mixed‐mode elastic instabilities to achieve intrinsically multistable shape reconfiguration. The multistable actuator unit consists of six stable states, including two pure bending states and four bend‐twist states. The actuator is composed of a pre‐stretched elastic membrane placed between two elastomeric frames embedded with SMA coils. By controlling the sequence and duration of SMA activation, the actuator is capable of rapid transition between all six stable states within hundreds of milliseconds. Principles of energy minimization are used to identify actuation sequences for various types of stable state transitions. Bending and twisting angles corresponding to various prestretch ratios are recorded based on parameterizations of the actuator's geometry. To demonstrate its application in practical conditions, the multistable actuator is used to perform visual inspection in a confined space, light source tracking during photovoltaic energy harvesting, and agile crawling.

 
more » « less
Award ID(s):
2427455
NSF-PAR ID:
10538805
Author(s) / Creator(s):
; ; ; ; ; ;
Publisher / Repository:
Wiley
Date Published:
Journal Name:
Advanced Science
Volume:
11
Issue:
18
ISSN:
2198-3844
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract

    Matching the rich multimodality of natural organisms, i.e., the ability to transition between crawling and swimming, walking and jumping, etc., represents a grand challenge in the fields of soft and bio‐inspired robotics. Here, a multimodal soft robot locomotion using highly compact and dynamic bistable soft actuators is achieved. These actuators are composed of a prestretched membrane sandwiched between two 3D printed frames with embedded shape memory alloy (SMA) coils. The actuator can swiftly transform between two oppositely curved states and generate a force of 0.3 N through a snap‐through instability that is triggered after 0.2 s of electrical activation with an input power of 21.1 ± 0.32W(i.e., electrical energy input of 4.22 ± 0.06J. The consistency and robustness of the snap‐through actuator response is experimentally validated through cyclical testing (580 cycles). The compact and fast‐responding properties of the soft bistable actuator allow it to be used as an artificial muscle for shape‐reconfigurable soft robots capable of multiple modes of SMA‐powered locomotion. This is demonstrated by creating three soft robots, including a reconfigurable amphibious robot that can walk on land and swim in water, a jumping robot (multimodal crawler) that can crawl and jump, and a caterpillar‐inspired rolling robot that can crawl and roll.

     
    more » « less
  2. Multistable structures have widespread applications in the design of deployable aerospace systems, mechanical metamaterials, flexible electronics, and multimodal soft robotics due to their capability of shape reconfiguration between multiple stable states. Recently, the snap-folding of rings, often in the form of circles or polygons, has shown the capability of inducing diverse stable configurations. The natural curvature of the rod segment (curvature in its stress-free state) plays an important role in the elastic stability of these rings, determining the number and form of their stable configurations during folding. Here, we develop a general theoretical framework for the elastic stability analysis of segmented rings (e.g., polygons) based on an energy variational approach. Combining this framework with finite element simulations, we map out all planar stable configurations of various segmented rings and determine the natural curvature ranges of their multistable states. The theoretical and numerical results are validated through experiments, which demonstrate that a segmented ring with a rectangular cross-section can show up to six distinct planar stable states. The results also reveal that, by rationally designing the segment number and natural curvature of the segmented ring, its one- or multiloop configuration can store more strain energy than a circular ring of the same total length. We envision that the proposed strategy for achieving multistability in the current work will aid in the design of multifunctional, reconfigurable, and deployable structures.

     
    more » « less
  3. This paper presents the design of a new soft pneumatic actuator whose direction and magnitude of bending may be precisely controlled via activation of different shape memory alloy (SMA) springs within the actuator, in conjunction with pneumatic actuation. This design is inspired by examples seen in nature such as the human tongue, where the combination of hydrostatic pressure and contraction of intrinsic muscle groups enables precise maneuverability and morphing capabilities. Here, SMA springs are embedded in the walls of the actuator, serving as intrinsic muscles that may be selectively activated to constrain the device. The pneumatic SMA (PneuSMA) actuator demonstrates remarkable spatial controllability evidenced by testing under different pressures and SMA activation combinations. A baseline finite element model is also developed to predict the actuator deformation under different pressure and activation conditions. 
    more » « less
  4. Abstract

    Soft robots composed of elastic materials can exhibit nonlinear behaviors, such as variable stiffness and adaptable deformation, that are favorable to cooperation with humans. These characteristics enable soft robots to be used in multiple applications, ranging from minimally invasive surgery and search and rescue in emergency or hazardous environments to marine or space exploration and assistive devices for people with musculoskeletal disorders. Although soft actuators composed of smart materials have been proposed as a control strategy for soft robots, most studies have focused on traditional actuators using hydraulic or pneumatic pressure. Over the years, these have made a lot of progress, but they have not been able to overcome the limitations of the complex configuration of the system and the expansion of the cross-section of the actuator when contracted. This paper merges the actuator design methodology for smart materials with the mechanical analysis of auxetic structures to present an electrically driven soft actuator architecture that achieves reliable actuation displacements. This novel soft actuator, constructed with contractile SMA springs and flexible auxetic metamaterials (FAM), has a spontaneous recovery of the shape after a contraction, a negative Poisson’s ratio, and over 90% of consistency with the performance predictions at the design stage. Our research presents a methodology for the design of a new electrically driven soft actuator, describes the manufacture of SMA springs and FAM, and concludes with the validation of the design by experimental analysis using the 2D planar soft actuator prototype. Finally, our study revealed that the application of the extraordinary characteristics of smart materials and structures together into a single architecture can be a strategy to overcome the limitations of existing soft actuator studies.

     
    more » « less
  5. Abstract

    Development of stimulus‐responsive materials is crucial for novel soft actuators. Among these actuators, the moisture‐responsive actuators are known for their accessibility, eco‐friendliness, and robust regenerative attributes. A major challenge of moisture‐responsive soft actuators (MRSAs) is achieving significant bending curvature within short response times. Many plants naturally perform large deformation through a layered hierarchical structure in response to moisture stimuli. Drawing inspiration from the bionic structure ofDelosperma nakurense (D. nakurense)seed capsule, here the fabrication of an ultrafast bi‐directional bending MRSAs is reported. Combining a superfine silk fibroin rod (SFR) modified graphene oxide (GO) moisture‐responsive layer with a moisture‐inert layer of reduced graphene oxide (RGO), this actuator demonstrated large bi‐directional bending deformation (−4.06 ± 0.09 to 10.44 ± 0.00 cm−1) and ultrafast bending rates (7.06 cm−1 s−1). The high deformation rate is achieved by incorporating the SFR into the moisture‐responsive layers, facilitating rapid water transmission within the interlayer structure. The complex yet predictable deformations of this actuator are demonstrated that can be utilized in smart switch, robotic arms, and walking device. The proposed SFR modification method is simple and versatile, enhancing the functionality of hierarchical layered actuators. It holds the potential to advance intelligent soft robots for application in confined environments.

     
    more » « less