skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Adversarial meta-learning of Gamma-minimax estimators that leverage prior knowledge
Bayes estimators are well known to provide a means to incorporate prior knowledge that can be expressed in terms of a single prior distribution. However, when this knowledge is too vague to express with a single prior, an alternative approach is needed. Gamma-minimax estimators provide such an approach. These estimators minimize the worst-case Bayes risk over a set Γ of prior distributions that are compatible with the available knowledge. Traditionally, Gamma-minimaxity is defined for parametric models. In this work, we define Gamma-minimax estimators for general models and propose adversarial meta-learning algorithms to compute them when the set of prior distributions is constrained by generalized moments. Accompanying convergence guarantees are also provided. We also introduce a neural network class that provides a rich, but finite-dimensional, class of estimators from which a Gamma-minimax estimator can be selected. We illustrate our method in two settings, namely entropy estimation and a prediction problem that arises in biodiversity studies.  more » « less
Award ID(s):
2210216
PAR ID:
10538826
Author(s) / Creator(s):
;
Publisher / Repository:
Electronic Journal of Statistics
Date Published:
Journal Name:
Electronic Journal of Statistics
Volume:
17
Issue:
2
ISSN:
1935-7524
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We address the problem of adaptive minimax density estimation on $$\mathbb{R}^{d}$$ with $$L_{p}$$ loss functions under Huber’s contamination model. To investigate the contamination effect on the optimal estimation of the density, we first establish the minimax rate with the assumption that the density is in an anisotropic Nikol’skii class. We then develop a data-driven bandwidth selection procedure for kernel estimators, which can be viewed as a robust generalization of the Goldenshluger-Lepski method. We show that the proposed bandwidth selection rule can lead to the estimator being minimax adaptive to either the smoothness parameter or the contamination proportion. When both of them are unknown, we prove that finding any minimax-rate adaptive method is impossible. Extensions to smooth contamination cases are also discussed. 
    more » « less
  2. We describe Bayes factors functions based on the sampling distributions of z, t, χ2, and F statistics, using a class of inverse-moment prior distributions to define alternative hypotheses. These non-local alternative prior distributions are centered on standardized effects, which serve as indices for the Bayes factor function. We compare the conclusions drawn from resulting Bayes factor functions to those drawn from Bayes factors defined using local alternative prior specifications and examine their frequentist operating characteristics. Finally, an application of Bayes factor functions for replicated experimental designs in psychology are provided. 
    more » « less
  3. null (Ed.)
    We develop a Nonparametric Empirical Bayes (NEB) framework for compound estimation in the discrete linear exponential family, which includes a wide class of discrete distributions frequently arising from modern big data applications. We propose to directly estimate the Bayes shrinkage factor in the generalized Robbins' formula via solving a scalable convex program, which is carefully developed based on a RKHS representation of the Stein's discrepancy measure. The new NEB estimation framework is flexible for incorporating various structural constraints into the data driven rule, and provides a unified approach to compound estimation with both regular and scaled squared error losses. We develop theory to show that the class of NEB estimators enjoys strong asymptotic properties. Comprehensive simulation studies as well as analyses of real data examples are carried out to demonstrate the superiority of the NEB estimator over competing methods. 
    more » « less
  4. null (Ed.)
    Abstract Estimating the mean of a probability distribution using i.i.d. samples is a classical problem in statistics, wherein finite-sample optimal estimators are sought under various distributional assumptions. In this paper, we consider the problem of mean estimation when independent samples are drawn from $$d$$-dimensional non-identical distributions possessing a common mean. When the distributions are radially symmetric and unimodal, we propose a novel estimator, which is a hybrid of the modal interval, shorth and median estimators and whose performance adapts to the level of heterogeneity in the data. We show that our estimator is near optimal when data are i.i.d. and when the fraction of ‘low-noise’ distributions is as small as $$\varOmega \left (\frac{d \log n}{n}\right )$$, where $$n$$ is the number of samples. We also derive minimax lower bounds on the expected error of any estimator that is agnostic to the scales of individual data points. Finally, we extend our theory to linear regression. In both the mean estimation and regression settings, we present computationally feasible versions of our estimators that run in time polynomial in the number of data points. 
    more » « less
  5. Identification theory for causal effects in causal models associated with hidden variable directed acyclic graphs (DAGs) is well studied. However, the corresponding algorithms are underused due to the complexity of estimating the identifying functionals they output. In this work, we bridge the gap between identification and estimation of population-level causal effects involving a single treatment and a single outcome. We derive influence function based estimators that exhibit double robustness for the identified effects in a large class of hidden variable DAGs where the treatment satisfies a simple graphical criterion; this class includes models yielding the adjustment and front-door functionals as special cases. We also provide necessary and sufficient conditions under which the statistical model of a hidden variable DAG is nonparametrically saturated and implies no equality constraints on the observed data distribution. Further, we derive an important class of hidden variable DAGs that imply observed data distributions observationally equivalent (up to equality constraints) to fully observed DAGs. In these classes of DAGs, we derive estimators that achieve the semiparametric efficiency bounds for the target of interest where the treatment satisfies our graphical criterion. Finally, we provide a sound and complete identification algorithm that directly yields a weight based estimation strategy for any identifiable effect in hidden variable causal models. 
    more » « less