Abstract Animal genitalia evolve rapidly because of coevolution between male and female traits. However, how the ecological context in which mating occurs might modulate the evolution of genital traits remains poorly understood. We investigated how a change in the sensory environment (the absence of light upon cave colonization) impacted the expression of genital traits in a live-bearing fish, Poecilia mexicana (Poeciliidae), with populations in adjacent cave and surface habitats. Quantifying characteristics of the female urogenital aperture and the male gonopodium (a modified anal fin used for copulation), we found significant differences in genital traits of both sexes. Females from cave populations exhibited larger and more rounded genitalia. Males from cave populations exhibited a significantly enlarged palp, a fleshy gonopodial appendage that has been hypothesized to have sensory functions. Our results suggest that genital traits can diverge rapidly among closely related populations exposed to different environmental conditions. The absence of light could impact genital evolution directly, if some genital structures have sensory functions that compensate for the lack of visual information during copulation, or indirectly, if the absence of light impacts dynamics of sexual conflict or cryptic female choice that arise through the interaction between the sexes.
more »
« less
A revised terminology for male genitalia in Hymenoptera (Insecta), with a special emphasis on Ichneumonoidea
Applying consistent terminology for morphological traits across different taxa is a highly pertinent task in the study of morphology and evolution. Different terminologies for the same traits can generate bias in phylogeny and prevent correct homology assessments. This situation is exacerbated in the male genitalia of Hymenoptera, and specifically in Ichneumonoidea, in which the terminology is not standardized and has not been fully aligned with the rest of Hymenoptera. In the current contribution, we review the terms used to describe the skeletal features of the male genitalia in Hymenoptera, and provide a list of authors associated with previously used terminology. We propose a unified terminology for the male genitalia that can be utilized across the order and a list of recommended terms. Further, we review and discuss the genital musculature for the superfamily Ichneumonoidea based on previous literature and novel observations and align the terms used for muscles across the literature.
more »
« less
- Award ID(s):
- 1916914
- PAR ID:
- 10538886
- Publisher / Repository:
- PeerJ
- Date Published:
- Journal Name:
- PeerJ
- Volume:
- 11
- ISSN:
- 2167-8359
- Page Range / eLocation ID:
- e15874
- Subject(s) / Keyword(s):
- Entomology Evolutionary Studies Taxonomy Zoology / Confocal laser scanning microscopy Male genitalia Hymenoptera anatomy ontology Ichneumonoidea Braconidae Ichneumonidae Homology Ontology Unified terminology Comparative anatomy
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract Nutrition-dependent growth of sexual traits is a major contributor to phenotypic diversity, and a large body of research documents insulin signalling as a major regulator of nutritional plasticity. However, findings across studies raise the possibility that the role of individual components within the insulin signalling pathway diverges in function among traits and taxa. Here, we use RNAi-mediated transcript depletion in the gazelle dung beetle to investigate the functions of forkhead box O (Foxo) and two paralogs of the insulin receptor (InR1 and InR2) in shaping nutritional plasticity in polyphenic male head horns, exaggerated fore legs, and weakly nutrition-responsive genitalia. Our functional genetic manipulations led to three main findings: FoxoRNAi reduced the length of exaggerated head horns in large males, while neither InR1 nor InR2 knock-downs resulted in measurable horn phenotypes. These results are similar to those documented previously for another dung beetle (Onthophagus taurus), but in stark contrast to findings in rhinoceros beetles. Secondly, knockdown of Foxo, InR1, and InR2 led to an increase in the intercept or slope of the scaling relationship of genitalia size. These findings are in contrast even to results documented previously for O. taurus. Lastly, while FoxoRNAi reduces male forelegs in D. gazella and O. taurus, the effects of InR1 and InR2 knockdowns diverged across dung beetle species. Our results add to the growing body of literature indicating that despite insulin signalling's conserved role as a regulator of nutritional plasticity, the functions of its components may diversify among traits and species, potentially fuelling the evolution of scaling relationships.more » « less
-
Abstract Genital evolution can be driven by diverse selective pressures. Across taxa we see evidence of covariation between males and females, as well as divergent genital morphologies between closely related species. Quantitative analyses of morphological changes in coevolving male and female genitalia have not yet been shown in vertebrates. This study uses 2D and 3D geometric morphometrics to quantitatively compare the complex shapes of vaginal pouches and hemipenes across three species of watersnakes (the sister taxa Nerodia fasciata, N. sipedon, and a close relative N. rhombifer) to address the relationship between genital morphology and divergence time in a system where sexual conflict may have driven sexually antagonistic coevolution of genital traits. Our pairwise comparisons of shape differences across species show that the sister species have male and female genitalia that are significantly different from each other, but more similar to each other than to N. rhombifer. We also determine that the main axes of shape variation are the same for males and females, with changes that relate to deeper bilobation of the vaginal pouch and hemipenes. In males, the protrusion of the region of spines at the base of the hemipene trades off with the degree of bilobation, suggesting amelioration of sexual conflict, perhaps driven by changes in the relative size of the entrance of the vaginal pouch that could have made spines less effective.more » « less
-
Abstract Male lizards often display multiple pigment‐based and structural colour signals which may reflect various quality traits (e.g. performance, parasitism), with testosterone (T) often mediating these relationships. Furthermore, environmental conditions can explain colour signal variation by affecting processes such as signal efficacy, thermoregulation and camouflage. The relationships between colour signals, male quality traits and environmental factors have often been analysed in isolation, but simultaneous analyses are rare. Thus, the response of multiple colour signals to variation in all these factors in an integrative analysis remains to be investigated.Here, we investigated how multiple colour signals relate to their information content, examined the role of T as a potential mediator of these relationships and how environmental factors explain colour signal variation.We performed an integrative study to examine the covariation between three colour signals (melanin‐based black, carotenoid‐based yellow–orange and structural UV), physiological performance, parasitism, T levels and environmental factors (microclimate, forest cover) in male common lizardsZootoca viviparafrom 13 populations.We found that the three colour signals conveyed information on different aspects of male condition, supporting a multiple message hypothesis. T influenced only parasitism, suggesting that T does not directly mediate the relationships between colour signals and their information content. Moreover, colour signals became more saturated in forested habitats, suggesting an adaptation to degraded light conditions, and became generally brighter in mesic conditions, in contradiction with the thermal melanism hypothesis.We show that distinct individual quality traits and environmental factors simultaneously explain variations of multiple colour signals with different production modes. Our study therefore highlights the complexity of colour signal evolution, involving various sets of selective pressures acting at the same time, but in different ways depending on colour production mechanism.more » « less
-
How complex morphologies evolve is one of the central questions in evolutionary biology. Observing the morphogenetic events that occur during development provides a unique perspective on the origins and diversification of morphological novelty. One can trace the tissue of origin, emergence, and even regression of structures to resolve murky homology relationships between species. Here, we trace the developmental events that shape some of the most diverse organs in the animal kingdom—the male terminalia (genitalia and analia) ofDrosophilids. Male genitalia are known for their rapid evolution with closely related species of theDrosophilagenus demonstrating vast variation in their reproductive morphology. We used confocal microscopy to monitor terminalia development during metamorphosis in twelve related species ofDrosophila. From this comprehensive dataset, we propose a new staging scheme for pupal terminalia development based on shared developmental landmarks, which allows one to align developmental time points between species. We were able to trace the origin of different substructures, find new morphologies and suggest possible homology of certain substructures. Additionally, we demonstrate that posterior lobe is likely originated prior to the split between theDrosophila melanogasterand theDrosophila yakubaclade. Our dataset opens up many new directions of research and provides an entry point for future studies of theDrosophilamale terminalia evolution and development.more » « less