skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


This content will become publicly available on August 28, 2025

Title: Finding Support for Tabular LLM Outputs
With the emerging advancements of AI, validating data generated by AI models becomes a key challenge. In this work, we tackle the problem of validating tabular data generated by large language models (LLMs). By leveraging a recently proposed technique called Gen-T, we present a technique to verify if the data in the LLM table can be reclaimed (reproduced) using tables available in a given data lake (for example, tables used to train the LLM). Specically, we measure the number of data lake tables that support tuples (or partial tuples) in a generated table. We further provide suggestions for value replacements if a generated value cannot be reclaimed. Using this approach, users can evaluate their LLM-generated tables, consider potential modications for table values, and gauge how much support the modied table has from the data lake. We discuss two case studies showing that table values annotated with reclama- tion support scores, along with possible value replacements, can help users assess the trustworthiness of LLM-generated tables.  more » « less
Award ID(s):
2325632 2107248 1956096
PAR ID:
10539018
Author(s) / Creator(s):
; ;
Publisher / Repository:
PVLDB Workshop on Tabular Data Analysis (TaDA)
Date Published:
Subject(s) / Keyword(s):
Data Management
Format(s):
Medium: X
Location:
China
Sponsoring Org:
National Science Foundation
More Like this
  1. We introduce the problem of Table Reclamation. Given a Source Table and a large table repository, reclamation finds a set of tables that, when integrated, reproduce the source table as closely as possible. Unlike query discovery problems like Query-by-Example or by-Target, Table Reclamation focuses on reclaiming the data in the Source Table as fully as possible using real tables that may be incomplete or inconsistent. To do this, we define a new measure of table similarity, called error-aware instance similarity, to measure how close a reclaimed table is to a Source Table, a measure grounded in instance similarity used in data exchange. Our search covers not only SELECT-PROJECT- JOIN queries, but integration queries with unions, outerjoins, and the unary operators subsumption and complementation that have been shown to be important in data integration and fusion. Using reclamation, a data scientist can understand if any tables in a repository can be used to exactly reclaim a tuple in the Source. If not, one can understand if this is due to differences in values or to incompleteness in the data. Our solution, Gen- T, performs table discovery to retrieve a set of candidate tables from the table repository, filters these down to a set of originating tables, then integrates these tables to reclaim the Source as closely as possible. We show that our solution, while approximate, is accurate, efficient and scalable in the size of the table repository with experiments on real data lakes containing up to 15K tables, where the average number of tuples varies from small (web tables) to extremely large (open data tables) up to 1M tuples. 
    more » « less
  2. The prevalence and strong capability of large language models (LLMs) present significant safety and ethical risks if exploited by malicious users. To prevent the potentially deceptive usage of LLMs, recent work has proposed algorithms to detect LLM-generated text and protect LLMs. In this paper, we investigate the robustness and reliability of these LLM detectors under adversarial attacks. We study two types of attack strategies: 1) replacing certain words in an LLM’s output with their synonyms given the context; 2) automatically searching for an instructional prompt to alter the writing style of the generation. In both strategies, we leverage an auxiliary LLM to generate the word replacements or the instructional prompt. Different from previous works, we consider a challenging setting where the auxiliary LLM can also be protected by a detector. Experiments reveal that our attacks effectively compromise the performance of all detectors in the study with plausible generations, underscoring the urgent need to improve the robustness of LLM-generated text detection systems. Code is available at https://github.com/shizhouxing/LLM-Detector-Robustness 
    more » « less
  3. Lookup tables are widely used in hardware to store arrays of constant values. For instance, complex mathematical functions in hardware are typically implemented through table-based methods such as plain tabulation, piecewise linear approximation, and bipartite or multipartite table methods, which primarily rely on lookup tables to evaluate the functions. Storing extensive tables of constant values, however, can lead to excessive hardware costs in resource-constrained edge devices such as FPGAs. In this paper, we propose a method, called CompressedLUT, as a lossless compression scheme to compress arrays of arbitrary data, implemented as lookup tables. Our method exploits decomposition, self-similarities, higher-bit compression, and multilevel compression techniques to maximize table size savings with no accuracy loss. CompressedLUT uses addition and arithmetic right shift beside several small lookup tables to retrieve original data during the decoding phase. Using such cost-effective elements helps our method use low area and deliver high throughput. For evaluation purposes, we compressed a number of different lookup tables, either obtained by direct tabulation of 12-bit elementary functions or generated by other table-based methods for approximating functions at higher resolutions, such as multipartite table method at 24-bit, piecewise polynomial approximation method at 36-bit, and hls4ml library at 18-bit resolutions. We implemented the compressed tables on FPGAs using HLS to show the efficiency of our method in terms of hardware costs compared to previous works. Our method demonstrated 60% table size compression and achieved 2.33 times higher throughput per slice than conventional implementations on average. In comparison, previous TwoTable and LDTC works compressed the lookup tables on average by 33% and 37%, which resulted in 1.63 and 1.29 times higher throughput than the conventional implementations, respectively. CompressedLUT is available as an open source tool. 
    more » « less
  4. Modern data lakes are heterogeneous in the vocabulary that is used to describe data. We study a problem of disambiguation in data lakes:How can we determine if a data value occurring more than once in the lake has different meanings and is therefore a homograph?While word and entity disambiguation have been well studied in computational linguistics, data management, and data science, we show that data lakes provide a new opportunity for disambiguation of data values, because tables implicitly define a massive network of interconnected values. We introduceDomainNet, which efficiently represents this network, and investigate to what extent it can be used to disambiguate values without requiring any supervision.

    DomainNetleverages network-centrality measures on a bipartite graph whose nodes represent data values and attributes to determine if a value is a homograph. A thorough experimental evaluation demonstrates that state-of-the-art techniques in domain discovery cannot be re-purposed to compete with our method. Specifically, using a domain discovery method to identify homographs achieves an F1-score of 0.38 versus 0.69 forDomainNet, which separates homographs well from data values that have a unique meaning. On a real data lake, our top-100 precision is 93%. Given a homograph, we also present a novel method for determining the number of meanings of the homograph and for assigning its data lake attributes to a meaning. We show the influence of homographs on two downstream tasks: entity-matching and domain discovery.

     
    more » « less
  5. We have made tremendous strides in providing tools for data scientists to discover new tables useful for their analyses. But despite these advances, the proper integration of discovered tables has been under-explored. An interesting semantics for integration, called Full Disjunction, was proposed in the 1980's, but there has been little progress in using it for data science to integrate tables culled from data lakes. We provide ALITE, the first proposal for scalable integration of tables that may have been discovered using join, union or related table search. We empirically show that ALITE can outperform previous algorithms for computing the Full Disjunction. ALITE relaxes previous assumptions that tables share common attribute names (which completely determine the join columns), are complete (without null values), and have acyclic join patterns. To evaluate ALITE, we develop and share three new benchmarks for integration that use real data lake tables. 
    more » « less