skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Tandem Diboration–Protoboration of Terminal Alkynes: A Practical Route to α-Substituted Alkenyl Boronates
Abstract A practical method is introduced for the catalytic conversion of terminal alkynes into α-substituted vinyl boronic esters. The process employs catalytic amounts of nanoparticle-supported gold catalysts and catalytic amounts of copper to effect the overall transformation.  more » « less
Award ID(s):
2117246
PAR ID:
10539063
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
SynLett
Date Published:
Journal Name:
Synlett
ISSN:
0936-5214
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Abstract We have developed a novel visible‐light‐catalyzed bioconjugation reaction, PhotoCLIC, that enables chemoselective attachment of diverse aromatic amine reagents onto a site‐specifically installed 5‐hydroxytryptophan residue (5HTP) on full‐length proteins of varied complexity. The reaction uses catalytic amounts of methylene blue and blue/red light‐emitting diodes (455/650 nm) for rapid site‐specific protein bioconjugation. Characterization of the PhotoCLIC product reveals a unique structure formed likely through a singlet oxygen‐dependent modification of 5HTP. PhotoCLIC has a wide substrate scope and its compatibility with strain‐promoted azide‐alkyne click reaction, enables site‐specific dual‐labeling of a target protein. 
    more » « less
  2. Abstract Halogen exchange in atom transfer radical polymerization (ATRP) is an efficient way to chain‐extend from a less active macroinitiator (MI) to a more active monomer. This has been previously achieved by using CuCl/L in the equimolar amount to Pn−Br MI in the chain extension step. However, this approach cannot be effectively applied in systems based on regeneration of activators (ARGET ATRP), since they operate with ppm amounts of catalysts. Herein, a catalytic halogen exchange procedure is reported using a catalytic amount of Cu in miniemulsion ARGET ATRP to chain‐extend from a less active poly(n‐butyl acrylate) (PBA) MI to a more active methyl methacrylate (MMA) monomer. Influence of different reagents on the initiation efficiency and dispersity is studied. Addition of 0.1mNaCl or tetraethylammonium chloride to ATRP of MMA initiated by methyl 2‐bromopropionate leads to high initiation efficiency and polymers with low dispersity. The optimized conditions are then employed in chain extension of PBA MI with MMA to prepare diblock and triblock copolymers. 
    more » « less
  3. Various valuable properties of azoarenes (“azo dyes”), including their vivid colors and their facile cis – trans photoisomerization, lead to their wide use in the chemical industry. As a result, ∼700 000 metric tons of azo dyes are produced each year. Most currently utilized synthetic methods towards azoarenes involve harsh reaction conditions and/or toxic reagents in stoichiometric amounts, which may affect selectivity and produce significant amounts of waste. An efficient alternative method towards this functional group includes transition metal catalyzed nitrene coupling. This method is generally more sustainable compared with most stoichiometric methods as it uses only catalytic amounts of co-reactants (metal catalysts), requires easily synthesizable organoazide precursors, and forms only dinitrogen as a by-product of catalysis. During the last decade, several catalytic systems were reported, and their reactivity was investigated. This perspective article will review these systems, focusing on various nitrene coupling mechanisms, and the substrate scope for each system. Particular attention will be devoted to the iron-alkoxide catalytic systems investigated in the PI's laboratory. The design and structural features of several generations of iron bis(alkoxide) complexes will be discussed, followed by the structure–activity studies of these catalysts in nitrene homo- and heterocoupling. 
    more » « less
  4. Abstract Over the last fifty years, the use of nickel catalysts for facilitating organic transformations has skyrocketed. Nickel(0) sources act as useful precatalysts because they can enter a catalytic cycle through ligand exchange, without needing to undergo additional elementary steps. However, most Ni(0) precatalysts are synthesized with stoichiometric aluminum–hydride reductants, pyrophoric reagents that are not atom‐economical and must be used at cryogenic temperatures. Here, we demonstrate that Ni(II) salts can be reduced on preparative scale using electrolysis to yield a variety of Ni(0) and Ni(II) complexes that are widely used as precatalysts in organic synthesis, including bis(1,5‐cyclooctadiene)nickel(0) [Ni(COD)2]. This method overcomes the reproducibility issues of previously reported methods by standardizing the procedure, such that it can be performed anywhere in a robust manner. It can be transitioned to large scale through an electrochemical recirculating flow process and extended to an in situ reduction protocol to generate catalytic amounts of Ni(0) for organic transformations. We anticipate that this work will accelerate adoption of preparative electrochemistry for the synthesis of low‐valent organometallic complexes in academia and industry. 
    more » « less
  5. Abstract The challenging transamidation of unactivated tertiary amides has been accomplished via cooperative acid/iodide catalysis. Most crucially, the method provides a novel manifold to re‐route the reactivity of unactivated N,N‐dialkyl amides through reactive acyl iodide intermediates, thus reverting the classical order of reactivity of carboxylic acid derivatives. This method provides a direct route to amide‐to‐amide bond interconversion with excellent chemoselectivity using equivalent amounts of amines. The combination of acid and iodide has been identified as the essential factor to activate the amide C−N bond through electrophilic catalytic activation, enabling the production of new desired transamidated products with wide substrate scope of both unactivated amides and amines, including late‐stage functionalization of complex APIs (>80 examples). We anticipate that this powerful activation mode of unactivated amide bonds will find broad‐ranging applications in chemical synthesis. 
    more » « less