Central Arctic properties and processes are important to the regional and global coupled climate system. The Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) Distributed Network (DN) of autonomous ice-tethered systems aimed to bridge gaps in our understanding of temporal and spatial scales, in particular with respect to the resolution of Earth system models. By characterizing variability around local measurements made at a Central Observatory, the DN covers both the coupled system interactions involving the ocean-ice-atmosphere interfaces as well as three-dimensional processes in the ocean, sea ice, and atmosphere. The more than 200 autonomous instruments (“buoys”) were of varying complexity and set up at different sites mostly within 50 km of the Central Observatory. During an exemplary midwinter month, the DN observations captured the spatial variability of atmospheric processes on sub-monthly time scales, but less so for monthly means. They show significant variability in snow depth and ice thickness, and provide a temporally and spatially resolved characterization of ice motion and deformation, showing coherency at the DN scale but less at smaller spatial scales. Ocean data show the background gradient across the DN as well as spatially dependent time variability due to local mixed layer sub-mesoscale and mesoscale processes, influenced by a variable ice cover. The second case (May–June 2020) illustrates the utility of the DN during the absence of manually obtained data by providing continuity of physical and biological observations during this key transitional period. We show examples of synergies between the extensive MOSAiC remote sensing observations and numerical modeling, such as estimating the skill of ice drift forecasts and evaluating coupled system modeling. The MOSAiC DN has been proven to enable analysis of local to mesoscale processes in the coupled atmosphere-ice-ocean system and has the potential to improve model parameterizations of important, unresolved processes in the future.
more »
« less
Air‐Ice‐Ocean Coupling During a Strong Mid‐Winter Cyclone: Observing Coupled Dynamic Interactions Across Scales
Abstract Arctic cyclones are key drivers of sea ice and ocean variability. During the 2019–2020 Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, joint observations of the coupled air‐ice‐ocean system were collected at multiple spatial scales. Here, we present observations of a strong mid‐winter cyclone that impacted the MOSAiC site as it drifted in the central Arctic pack ice. The sea ice dynamical response showed spatial structure at the scale of the evolving and translating cyclonic wind field. Internal ice stress and ocean stress play significant roles, resulting in timing offsets between the atmospheric forcing and the ice response and post‐cyclone inertial ringing in the ice and ocean. Ice motion in response to the wind field then forces the upper ocean currents through frictional drag. The strongest impacts to the sea ice and ocean from the passing cyclone occur as a result of the surface impacts of a strong atmospheric low‐level jet (LLJ) behind the trailing cold front and changing wind directions between the warm‐sector LLJ and post cold‐frontal LLJ. Impacts of the cyclone are prolonged through the coupled ice‐ocean inertial response. Local impacts of the approximately 120 km wide LLJ occur over a 12 hr period or less and at scales of a kilometer to a few tens of kilometers, meaning that these impacts occur at combined smaller spatial scales and faster time scales than most satellite observations and coupled Earth system models can resolve.
more »
« less
- Award ID(s):
- 1723400
- PAR ID:
- 10539083
- Publisher / Repository:
- DOI PREFIX: 10.1029
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Atmospheres
- Volume:
- 129
- Issue:
- 17
- ISSN:
- 2169-897X
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract A regional data‐constrained coupled ocean‐sea ice general circulation model and its adjoint are used to investigate mechanisms controlling the volume transport variability through Bering Strait during 2002 to 2013. Comprehensive time‐resolved sensitivity maps of Bering Strait transport to atmospheric forcing can be accurately computed with the adjoint along the forward model trajectory to identify spatial and temporal scales most relevant to the strait's transport variability. The simulated Bering Strait transport anomaly is found to be controlled primarily by the wind stress on short time scales of order 1 month. Spatial decomposition indicates that on monthly time scales winds over the Bering and the combined Chukchi and East Siberian Seas are the most significant drivers. Continental shelf waves and coastally trapped waves are suggested as the dominant mechanisms for propagating information from the far field to the strait. In years with transport extrema, eastward wind stress anomalies in the Arctic sector are found to be the dominant control, with correlation coefficient of 0.94. This implies that atmospheric variability over the Arctic plays a substantial role in determining Bering Strait flow variability. The near‐linear response of the transport anomaly to wind stress allows for predictive skill at interannual time scales, thus potentially enabling skillful prediction of changes at this important Pacific‐Arctic gateway, provided that accurate measurements of surface winds in the Arctic can be obtained. The novelty of this work is the use of space and time‐resolved adjoint‐based sensitivity maps, which enable detailed dynamical, that is, causal attribution of the impacts of different forcings.more » « less
-
Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice.more » « less
-
Arctic sea ice growth in response to synoptic- and large-scale atmospheric forcing from CMIP5 modelsnull (Ed.)We explore the response of wintertime Arctic sea ice growth to strong cyclones and to large-scale circulation patterns on the daily scale using Earth system model output in phase 5 of the Coupled Model Intercomparison Project (CMIP5). A combined metrics ranking method selects three CMIP5 models that are successful in reproducing the wintertime Arctic dipole (AD) pattern. A cyclone identification method is applied to select strong cyclones in two subregions in the North Atlantic to examine their different impacts on sea ice growth. The total change of sea ice growth rate (SGR) is split into those respectively driven by the dynamic and thermodynamic atmospheric forcing. Three models reproduce the downward longwave radiation anomalies that generally match thermodynamic SGR anomalies in response to both strong cyclones and large-scale circulation patterns. For large-scale circulation patterns, the negative AD outweighs the positive Arctic Oscillation in thermodynamically inhibiting SGR in both impact area and magnitude. Despite the disagreement on the spatial distribution, the three CMIP5 models agree on the weaker response of dynamic SGR than thermodynamic SGR. As the Arctic warms, the thinner sea ice results in more ice production and smaller spatial heterogeneity of thickness, dampening the SGR response to the dynamic forcing. The higher temperature increases the specific heat of sea ice, thus dampening the SGR response to the thermodynamic forcing. In this way, the atmospheric forcing is projected to contribute less to change daily SGR in the future climate.more » « less
-
Abstract The rapid decline of summer Arctic sea ice over the past few decades has been driven by a combination of increasing greenhouse gases and internal variability of the climate system. However, uncertainties remain regarding spatial and temporal characteristics of the optimal internal atmospheric mode that most favors summer sea ice melting on low-frequency time scales. To pinpoint this mode, we conduct a suite of simulations in which atmospheric circulation is constrained by nudging tropospheric Arctic (60°–90°N) winds within the Community Earth System Model, version 1 (CESM1), to those from reanalysis. Each reanalysis year is repeated for over 10 model years using fixed greenhouse gas concentrations and the same initial conditions. Composites show the strongest September sea ice losses are closely preceded by a common June–August (JJA) barotropic anticyclonic circulation in the Arctic favoring shortwave absorption at the surface. Successive years of strong wind-driven melting also enhance declines in Arctic sea ice through enhancement of the ice–albedo feedback, reaching a quasi-equilibrium response after repeated wind forcing for over 5–6 years, as the effectiveness of the wind-driven ice–albedo feedback becomes saturated. Strong melting favored by a similar wind pattern as observations is detected in a long preindustrial simulation and 400-yr paleoclimate reanalysis, suggesting that a summer barotropic anticyclonic wind pattern represents the optimal internal atmospheric mode maximizing sea ice melting in both the model and natural world over a range of time scales. Considering strong contributions of this mode to changes in Arctic climate, a better understanding of its origin and maintenance is vital to improving future projections of Arctic sea ice.more » « less
An official website of the United States government
