skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Board 357: Psychosocial and Skills-Based Outcomes of Participating in Vertically Integrated Projects (VIP)
Challenge or problem-based learning help students develop deeper content understanding and enhanced STEM skillsets and provide opportunities for learning across multiple contexts. Educational interventions that include active learning, mentoring, and role modeling are particularly important in recruiting and retaining female and minority students in STEM. With this framework in mind, we implemented the Vertically-Integrated Projects (VIP) model at a public urban research university in the 2022-2023 academic year with the goal of helping participating students increase engineering and STEM identity and other psychosocial outcomes. This paper reports the results from the first year of our VIP program. At the beginning and end of the academic year, participants completed measures of engineering identity; engineering self-efficacy; engineering mindset; intention to remain in the engineering major; intention to have a career in engineering; and STEM professional identity. Wilcoxon Signed Ranks (N=10) tests showed no statistically significant differences on any of these measures. Participants also responded to 20 items assessing their perceptions of their level of knowledge and skills in a variety of areas relevant to their experience in the VIP program. Wilcoxon Signed Ranks tests (N=10) revealed some statistically significant differences between pre- and post-test. Specifically, students tended to see themselves as having greater knowledge or skills in planning a long-term project, communicating technical concepts and designs to others, designing systems, components, or processes to meet practical or applied needs, understanding computer hardware and systems, working on a multidisciplinary team, and making ethical decisions in engineering/research. Finally, at the end of the Spring semester, participants rated the extent to which they perceived the VIP program helped them to develop their skills on the same 20 items. Most participants believed the VIP program helped them to develop each skill either somewhat or a great deal. Overall, while participation in the VIP program did not influence student engineering identity, self-efficacy, mindset, or major/career intentions, it was associated with increased self-perceived abilities on six specific skills. Additionally, most participants agreed that the VIP program helped them develop 20 skills at least “somewhat.”  more » « less
Award ID(s):
2120819
PAR ID:
10539107
Author(s) / Creator(s):
; ;
Publisher / Repository:
ASEE Conferences
Date Published:
Format(s):
Medium: X
Location:
Portland, Oregon
Sponsoring Org:
National Science Foundation
More Like this
  1. The purpose of this research full paper is to examine the development of undergraduate students’ research identity during a summer undergraduate research experience. Identity development through socialization experiences is crucial for students to explore future career paths, especially in careers that require research-focused graduate degrees. However, literature is limited on how effective socialization occurs for research and future research-related careers. This paper follows 10 undergraduate engineering and physics students participating in an engineering-focused Research Experiences for Undergraduates (REU) program at an R1 institution to explore this gap in knowledge. As part of a longitudinal multi-method study, participants completed a pre- and post-experience survey, and participated in three interviews over the course of the summer. Survey data were analyzed using descriptive statistics and a Wilcoxon signed-rank test. Interviews were analyzed through the lens of academic self-concept theory for common themes of socialization and identity development in research through the course of the program. Findings indicate that undergraduate students’ research self-concepts are heavily influenced by research experiences and comparisons to their peers. The students’ increase in research self-concept as well as their experiences and interactions within the program allowed them to see research careers as attainable and increased their interest in pursuing graduate degrees after the program. Survey data showed a statistical increase in research self-efficacy and research identity at the end of the program, reinforcing the idea that students’ experiences in the REU helped them grow as researchers and engineers. This research increases our understanding of students’ research identity development and provides potential ways to implement research self-concept and identity development to similar undergraduate research experiences. 
    more » « less
  2. The Freshman Year Innovator Experience (FYIE) program at The University of Texas Rio Grande Valley, a Minority Serving Institution (MSI), aims to enhance the freshman experience for incoming students by developing key academic success skills. The program is developing self-transformation skills in freshman mechanical engineering students to help them overcome academic and professional challenges exacerbated by the COVID-19 pandemic. FYIE participants are taking two courses simultaneously: Introduction to Engineering (Course A) and Learning Frameworks (Course B). In Course A, students will complete a 6-week engineering design project, and in Course B, they are completing a 6-week academic career path project. During these parallel projects, timed interventions demonstrate the analogies between the engineering design process and the academic career pathways project. The objective is for students to realize that they can apply the design thinking skills they learn in the engineering design process to solve their academic career challenges. A pilot of the FYIE program began in the 2023 Spring semester, with instructors from Course A and B introducing the parallel projects. The pilot continues in the 2023 Fall semester, with refinements to the parallel projects and the definition of analogy intervention points for self-transformation. The authors of the paper will present the results from the pilot implementations, as well as discuss the challenges and future work. This proposed initiative is designed with the intention of adhering to the ongoing mission of the College of Engineering and Computer Science (CECS) at the UTRGV to 1) increase the number of STEM degrees awarded to Hispanics, 2) broadening participation of females in STEM related fields, and 3) increase the persistence and self-efficacy in STEM fields amid COVID-19. This project is funded by NSF award 2225247. 
    more » « less
  3. nterest in science, technology, engineering, and mathematics (STEM) begins as early as elementary and middle school. As youth enter adolescence, they begin to shape their personal identities and start making decisions about who they are and could be in the future. Students form their career aspirations and interests related to STEM in elementary school, long before they choose STEM coursework in high school or college. Much of the literature examines either science or STEM identity and career aspirations without separating out individual sub-disciplines. Therefore, the purpose of this paper is to describe the development of a survey instrument to specifically measure engineering identity and career aspirations in adolescents and preadolescents. When possible, we utilized existing measures of STEM identity and career aspirations, adapting them when necessary to the elementary school level and to fit the engineering context. The instrument was developed within the context of a multi-year, NSF-funded research project examining the dynamics between undergraduate outreach providers and elementary students to understand the impact of the program on students’ engineering identity and career aspirations. Three phases of survey development were conducted that involved 492 elementary students from diverse communities in the United States. Three sets of items were developed and/or adapted throughout the four phases. The first set of items assessed Engineering Identity. Recent research suggests that identity consists of three components: recognition, interest, and performance/competence. Items assessing each of these constructs were included in the survey. The second and third sets of items reflected Career Interests and Aspirations. Because elementary and middle school students often have a limited or nascent awareness of what engineers do or misconceptions about what a job in science or engineering entails, it is problematic to measure their engineering identity or career aspirations by directly asking them whether they want to be a scientist/engineer or by using a checklist of broad career categories. Therefore, similar to other researchers, the second set of items assessed the types of activities that students are interested in doing as part of a future career, including both non-STEM and STEM (general and engineering-specific) activities. These items were created by the research team or adapted from activity lists used in existing research. The third set of items drew from career counseling measures relying on Holland’s Career Codes. We adapted the format of these instruments by asking students to choose the activity they liked the most from a list of six activities that reflected each of the codes rather than responding to their interest about each activity. Preliminary findings for each set of items will be discussed. Results from the survey contribute to our understanding of engineering identities and career aspirations in preadolescent and adolescent youth. However, our instrument has the potential for broader application in non-engineering STEM environments (e.g., computer science) with minor wording changes to reflect the relevant science subject area. More research is needed in determining its usefulness in this capacity. 
    more » « less
  4. In response to the low representation of Latinx adults in STEM occupations, this community-based participatory action research study aims to increase the number of middle school youths developing STEM career identities and entering high school with the intention to pursue STEM careers. The students were provided with summer and after-school activities focusing on network science and career development curricula. Using a quasi-experimental pretest–posttest design and career narratives, this study examined the changes in STEM and career self-efficacy, as well as career identity. The results show improvements in self-efficacy, an increased number of youths with intentions of pursuing future STEM career opportunities, and deeper reflections on their talents and skills after program participation. This paper also describes the program development and implementation in detail, as well as the adaptations that resulted from COVID-19, for scholars and educators designing similar programs. This study provides promising evidence for the quality of STEM and career development lessons in supporting the emergence of a STEM career identity and self-efficacy. 
    more » « less
  5. The Strategic Undergraduate STEM Talent Acceleration INitiative (SUSTAIN) provided a coherent ecosystem of academic, social, and career support services designed for a diverse cohort of high-achieving, low-income STEM students during their first year of undergraduate study. Findings are discussed in terms of the efficacy of the program interventions to enhance students’ socialization and retention within the STEM community. Results indicate that participants perceived the interventions to have helped them adjust to college life and develop skills in understanding science and the scientific process. Which in turn, participants reported, helped them to succeed in their STEM courses and visualize themselves as part of the larger STEM community. The participants rated STEM faculty mentoring, research experience and community building as more helpful than other interventions. Our findings will aid researchers to better understand how SUSTAIN interventions influence students’ socialization into the STEM community and provide valuable insight to guide policymakers in shaping future programs that are successful in retaining diverse students in STEM fields. 
    more » « less