skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Microbial DNA extraction method for avian feces and preen oil from diverse species
Abstract As DNA sequencing technology continues to rapidly improve, studies investigating the microbial communities of host organisms (i.e., microbiota) are becoming not only more popular but also more financially accessible. Across many taxa, microbiomes can have important impacts on organismal health and fitness. To evaluate the microbial community composition of a particular microbiome, microbial DNA must be successfully extracted. Fecal samples are often easy to collect and are a good source of gut microbial DNA. Additionally, interest in the avian preen gland microbiome is rapidly growing, due to the importance of preen oil for many aspects of avian life. Microbial DNA extractions from avian fecal and preen oil samples present multiple challenges, however. Here, we describe a modified PrepMan Ultra Sample Preparation Reagent microbial DNA extraction method that is less expensive than other commonly used methodologies and is highly effective for both fecal and preen oil samples collected from a broad range of avian species. We expect our method will facilitate microbial DNA extractions from multiple avian microbiome reservoirs, which have previously proved difficult and expensive. Our method therefore increases the feasibility of future studies of avian host microbiomes.  more » « less
Award ID(s):
1754909 1928802
PAR ID:
10539152
Author(s) / Creator(s):
 ;  ;  ;  
Publisher / Repository:
Wiley Blackwell (John Wiley & Sons)
Date Published:
Journal Name:
Ecology and Evolution
Volume:
14
Issue:
9
ISSN:
2045-7758
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kormas, Konstantinos Aristomenis (Ed.)
    ABSTRACT The study of the mammalian microbiome serves as a critical tool for understanding host-microbial diversity and coevolution and the impact of bacterial communities on host health. While studies of specific microbial systems (e.g., in the human gut) have rapidly increased, large knowledge gaps remain, hindering our understanding of the determinants and levels of variation in microbiomes across multiple body sites and host species. Here, we compare microbiome community compositions from eight distinct body sites among 17 phylogenetically diverse species of nonhuman primates (NHPs), representing the largest comparative study of microbial diversity across primate host species and body sites. Analysis of 898 samples predominantly acquired in the wild demonstrated that oral microbiomes were unique in their clustering, with distinctive divergence from all other body site microbiomes. In contrast, all other body site microbiomes clustered principally by host species and differentiated by body site within host species. These results highlight two key findings: (i) the oral microbiome is unique compared to all other body site microbiomes and conserved among diverse nonhuman primates, despite their considerable dietary and phylogenetic differences, and (ii) assessments of the determinants of host-microbial diversity are relative to the level of the comparison (i.e., intra-/inter-body site, -host species, and -individual), emphasizing the need for broader comparative microbial analyses across diverse hosts to further elucidate host-microbial dynamics, evolutionary and biological patterns of variation, and implications for human-microbial coevolution. IMPORTANCE The microbiome is critical to host health and disease, but much remains unknown about the determinants, levels, and evolution of host-microbial diversity. The relationship between hosts and their associated microbes is complex. Most studies to date have focused on the gut microbiome; however, large gaps remain in our understanding of host-microbial diversity, coevolution, and levels of variation in microbiomes across multiple body sites and host species. To better understand the patterns of variation and evolutionary context of host-microbial communities, we conducted one of the largest comparative studies to date, which indicated that the oral microbiome was distinct from the microbiomes of all other body sites and convergent across host species, suggesting conserved niche specialization within the Primates order. We also show the importance of host species differences in shaping the microbiome within specific body sites. This large, comparative study contributes valuable information on key patterns of variation among hosts and body sites, with implications for understanding host-microbial dynamics and human-microbial coevolution. 
    more » « less
  2. null (Ed.)
    Microbial contamination of recreation waters is a major concern globally, with pollutants originating from many sources, including human and other animal wastes often introduced during storm events. Fecal contamination is traditionally monitored by employing culture methods targeting fecal indicator bacteria (FIB), namely E . coli and enterococci, which provides only limited information of a few microbial taxa and no information on their sources. Host-associated qPCR and metagenomic DNA sequencing are complementary methods for FIB monitoring that can provide enhanced understanding of microbial communities and sources of fecal pollution. Whole metagenome sequencing (WMS), quantitative real-time PCR (qPCR), and culture-based FIB tests were performed in an urban watershed before and after a rainfall event to determine the feasibility and application of employing a multi-assay approach for examining microbial content of ambient source waters. Cultivated E . coli and enterococci enumeration confirmed presence of fecal contamination in all samples exceeding local single sample recreational water quality thresholds ( E . coli , 410 MPN/100 mL; enterococci, 107 MPN/100 mL) following a rainfall. Test results obtained with qPCR showed concentrations of E . coli , enterococci, and human-associated genetic markers increased after rainfall by 1.52-, 1.26-, and 1.11-fold log 10 copies per 100 mL, respectively. Taxonomic analysis of the surface water microbiome and detection of antibiotic resistance genes, general FIB, and human-associated microorganisms were also employed. Results showed that fecal contamination from multiple sources (human, avian, dog, and ruminant), as well as FIB, enteric microorganisms, and antibiotic resistance genes increased demonstrably after a storm event. In summary, the addition of qPCR and WMS to traditional surrogate techniques may provide enhanced characterization and improved understanding of microbial pollution sources in ambient waters. 
    more » « less
  3. Setchell, J (Ed.)
    Abstract Bacterial communities present in the host digestive tract are important for the breakdown and absorption of nutrients required by the host. Changes in diet and the environment are major factors affecting the composition and diversity of the fecal microbiome. In addition to changes in ambient temperature and rainfall, primates living in seasonal temperate environments also need to adapt to seasonal changes in food resource quantity and quality. However, there is a lack of information about the fecal microbiome in African strepsirrhines relative to other primate taxa. We examined the effects of seasonal dietary and environmental changes on fecal microbial alpha diversity and composition in wild greater thick-tailed galagos (Otolemur crassicaudatus) at Lajuma Research Centre, South Africa. We collected fecal samples and assessed food availability and weather in summer and winter across 1 year and used 16S rRNA next-generation sequencing to characterise the fecal microbiome of 49 animals. We found significant increases in rainfall, ambient temperature, and food availability in summer compared with winter. However, we found no significant changes in body mass or in the overall diversity of bacterial species present in fecal samples between the two seasons. We found significant decreases in the abundance of certain bacterial families in winter, suggesting a change in diet. Our findings suggest that greater thick-tailed galagos can find food resources to maintain their body mass throughout the year. Our insights into the seasonal fecal microbiome of greater thick-tailed galagos add to the growing knowledge and understanding of fecal microbiomes in primates and how they help primates cope with changes to their environments. 
    more » « less
  4. Abstract Microorganisms play essential roles in the health and resilience of cnidarians. Understanding the factors influencing cnidarian microbiomes requires cross study comparisons, yet the plethora of protocols used hampers dataset integration. We unify 16S rRNA gene sequences from cnidarian microbiome studies under a single analysis pipeline. We reprocess 12,010 cnidarian microbiome samples from 186 studies, alongside 3,388 poriferan, 370 seawater samples, and 245 cultured Symbiodiniaceae, unifying ~6.5 billion sequence reads. Samples are partitioned by hypervariable region and sequencing platform to reduce sequencing variability. This systematic review uncovers an incredible diversity of 86 archaeal and bacterial phyla associated with Cnidaria, and highlights key bacteria hosted across host sub-phylum, depth, and microhabitat. Shallow (< 30 m) water Alcyonacea and Actinaria are characterized by highly shared and relatively abundant microbial communities, unlike Scleractinia and most deeper cnidarians. Utilizing the V4 region, we find that cnidarian microbial composition, richness, diversity, and structure are primarily influenced by host phylogeny, sampling depth, and ocean body, followed by microhabitat and sampling date. We identify host and geographical generalist and specificEndozoicomonasclades within Cnidaria and Porifera. This systematic review forms a framework for understanding factors governing cnidarian microbiomes and creates a baseline for assessing stress associated dysbiosis. 
    more » « less
  5. Abstract The study of microbiomes across organisms and environments has become a prominent focus in molecular ecology. This perspective article explores common challenges, methodological advancements, and future directions in the field. Key research areas include understanding the drivers of microbiome community assembly, linking microbiome composition to host genetics, exploring microbial functions, transience and spatial partitioning, and disentangling non‐bacterial components of the microbiome. Methodological advancements, such as quantifying absolute abundances, sequencing complete genomes, and utilizing novel statistical approaches, are also useful tools for understanding complex microbial diversity patterns. Our aims are to encourage robust practices in microbiome studies and inspire researchers to explore the next frontier of this rapidly changing field. 
    more » « less