skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Inverse covariance operators of multivariate nonstationary time series
For multivariate stationary time series many important properties, such as partial correlation, graphical models and autoregressive representations are encoded in the inverse of its spectral density matrix. This is not true for nonstationary time series, where the pertinent information lies in the inverse infinite dimensional covariance matrix operator associated with the multivariate time series. This necessitates the study of the covariance of a multivariate nonstationary time series and its relationship to its inverse. We show that if the rows/columns of the infinite dimensional covariance matrix decay at a certain rate then the rate (up to a factor) transfers to the rows/columns of the inverse covariance matrix. This is used to obtain a nonstationary autoregressive representation of the time series and a Baxter-type bound between the parameters of the autoregressive infinite representation and the corresponding finite autoregressive projection. The aforementioned results lay the foundation for the subsequent analysis of locally stationary time series. In particular, we show that smoothness properties on the covariance matrix transfer to (i) the inverse covariance (ii) the parameters of the vector autoregressive representation and (iii) the partial covariances. All results are set up in such a way that the constants involved depend only on the eigenvalue of the covariance matrix and can be applied in the high-dimensional settings with non-diverging eigenvalues.  more » « less
Award ID(s):
2210726
PAR ID:
10539260
Author(s) / Creator(s):
;
Publisher / Repository:
Bernoulli
Date Published:
Journal Name:
Bernoulli
Volume:
30
Issue:
2
ISSN:
1350-7265
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Graphical models are ubiquitous for summarizing conditional relations in multivariate data. In many applications involving multivariate time series, it is of interest to learn an interaction graph that treats each individual time series as nodes of the graph, with the presence of an edge between two nodes signifying conditional dependence given the others. Typically, the partial covariance is used as a measure of conditional dependence. However, in many applications, the outcomes may not be Gaussian and/or could be a mixture of different outcomes. For such time series using the partial covariance as a measure of conditional dependence may be restrictive. In this article, we propose a broad class of time series models which are specifically designed to succinctly encode process-wide conditional independence in its parameters. For each univariate component in the time series, we model its conditional distribution with a distribution from the exponential family. We develop a notion of process-wide compatibility under which such conditional specifications can be stitched together to form a well-defined strictly stationary multivariate time series. We call this construction a conditionally exponential stationary graphical model (CEStGM). A central quantity underlying CEStGM is a positive kernel which we call the interaction kernel. Spectral properties of such positive kernel operators constitute a core technical foundation of this work. We establish process-wide local and global Markov properties of CEStGM exploiting a Hammersley-Clifford type decomposition of the interaction kernel. Further, we study various probabilistic properties of CEStGM and show that it is geometrically mixing. An approximate Gibbs sampler is also developed to simulate sample paths of CEStGM. 
    more » « less
  2. We consider the problem of inferring the conditional independence graph (CIG) of a high-dimensional stationary, multivariate long-range dependent (LRD) Gaussian time series. In a time series graph, each component of the vector series is represented by a distinct node, and associations between components are represented by edges between the corresponding nodes. In a recent work on graphical modeling of short-range dependent (SRD) Gaussian time series, the problem was cast as one of multi-attribute graph estimation for random vectors where a vector is associated with each node of the graph. At each node, the associated random vector consists of a time series component and its delayed copies. A theoretical analysis based on short-range dependence has been given in Tugnait (2022 ICASSP). In this paper we analyze this approach for LRD Gaussian time series and provide consistency results regarding convergence in the Frobenius norm of the inverse covariance matrix associated with the multi-attribute graph. 
    more » « less
  3. In this paper we frame a fairly comprehensive set of spacetime detection problems, where a subspace signal modulates the mean-value vector of a multivariate normal measurement and nonstationary additive noise determines the covariance matrix. The measured spacetime data matrix consists of multiple measurements in time. As time advances, the signal component moves around in a subspace, and the noise covariance matrix changes in scale. 
    more » « less
  4. Representation learning is typically applied to only one mode of a data matrix, either its rows or columns. Yet in many applications, there is an underlying geometry to both the rows and the columns. We propose utilizing this coupled structure to perform co-manifold learning: uncovering the underlying geometry of both the rows and the columns of a given matrix, where we focus on a missing data setting. Our unsupervised approach consists of three components. We first solve a family of optimization problems to estimate a complete matrix at multiple scales of smoothness. We then use this collection of smooth matrix estimates to compute pairwise distances on the rows and columns based on a new multi-scale metric that implicitly introduces a coupling between the rows and the columns. Finally, we construct row and column representations from these multi- scale metrics. We demonstrate that our approach outperforms competing methods in both data visualization and clustering. 
    more » « less
  5. Information from frequency bands in biomedical time series provides useful summaries of the observed signal. Many existing methods consider summaries of the time series obtained over a few well-known, pre-defined frequency bands of interest. However, there is a dearth of data-driven methods for identifying frequency bands that optimally summarize frequency-domain information in the time series. A new method to identify partition points in the frequency space of a multivariate locally stationary time series is proposed. These partition points signify changes across frequencies in the time-varying behavior of the signal and provide frequency band summary measures that best preserve nonstationary dynamics of the observed series. An $$L_2$$-norm based discrepancy measure that finds differences in the time-varying spectral density matrix is constructed, and its asymptotic properties are derived. New nonparametric bootstrap tests are also provided to identify significant frequency partition points and to identify components and cross-components of the spectral matrix exhibiting changes over frequencies. Finite-sample performance of the proposed method is illustrated via simulations. The proposed method is used to develop optimal frequency band summary measures for characterizing time-varying behavior in resting-state electroencephalography time series, as well as identifying components and cross-components associated with each frequency partition point. 
    more » « less