skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Identification and quantification of pigments in plant leaves using thin layer chromatography-Raman spectroscopy (TLC-Raman)
This work utilizes the collection of Raman spectra directly from thin layer chromatography (TLC) plates for quantitative determination of the pigment content of plant leaves.  more » « less
Award ID(s):
2226740
PAR ID:
10539295
Author(s) / Creator(s):
; ; ; ; ;
Publisher / Repository:
Royal Society of Chemistry
Date Published:
Journal Name:
Analytical Methods
Volume:
16
Issue:
16
ISSN:
1759-9660
Page Range / eLocation ID:
2449 to 2455
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Kung, Jennifer (Ed.)
    Abstract Raman spectroscopy is a rapid, nondestructive analysis technique used in various scientific disciplines, including mineralogy, chemistry, materials science, and biology. The analysis of Raman spectra and the identification of specific substances in unknown samples can be complex and time-consuming due to the large database of Raman spectra. The Raman Match application was developed to simplify and automate the sample identification process through a search and match method. The application integrates the well-established RRUFF Raman database with the Python programming language. It provides a user-friendly graphical interface to load Raman spectra, identify and fit peaks, match peaks to the reference libraries, visualize the results, and generate publication-ready figures. The application offers a swift and automated method for mineral identification using Raman spectroscopy in laboratory and field settings and during planetary exploration missions to extraterrestrial environments with constraints on time and resources. 
    more » « less
  2. Stimulated Raman projection tomography is a label-free volumetric chemical imaging technology allowing three-dimensional (3D) reconstruction of chemical distribution in a biological sample from the angle-dependent stimulated Raman scattering projection images. However, the projection image acquisition process requires rotating the sample contained in a capillary glass held by a complicated sample rotation stage, limiting the volumetric imaging speed, and inhibiting the study of living samples. Here, we report a tilt-angle stimulated Raman projection tomography (TSPRT) system which acquires angle-dependent projection images by utilizing tilt-angle beams to image the sample from different azimuth angles sequentially. The TSRPT system, which is free of sample rotation, enables rapid scanning of different views by a tailor-designed four-galvo-mirror scanning system. We present the design of the optical system, the theory, and calibration procedure for chemical tomographic reconstruction. 3D vibrational images of polystyrene beads and C. elegans are demonstrated in the C-H vibrational region. 
    more » « less
  3. In this work, we extend a previously developed Raman bond model to periodic slab systems for interpreting chemical enhancements of surface-enhanced Raman scattering (SERS). The Raman bond model interprets chemical enhancements as interatomic charge flow modulations termed Raman bonds. Here, we show that the Raman bond model offers a unified interpretation of chemical enhancements for localized and periodic systems. As a demonstration of the Raman bond model, we study model systems consisting of CO and pyridine molecules on Ag clusters and slabs. We find that for both localized and periodic systems, the dominant Raman bonds are distributed near the molecule–metal interface and, therefore, the chemical enhancements are determined by a common Raman bond pattern. The effects of surface coverage, thickness, and roughness on the chemical enhancements have been studied, which shows that decreasing surface coverage or creating surface roughness increases chemical enhancements. In both of these cases, the inter-fragment charge flow connectivity is improved due to more dynamic polarization at the interface. The chemical enhancement is shown to scale with the inter-fragment charge flow to the fourth power. Since the inter-fragment charge flow is determined by the charge transfer excitation energy, the Raman bond model is connected to the transition-based analysis of chemical enhancements. We also show that the SERS spectra of localized and periodic systems normalized by inter-fragment charge flows can be unified. In summary, the Raman bond model offers a unique framework for understanding SERS spectra in terms of Raman bond distributions and offers a connection between localized and periodic model systems of SERS studies. 
    more » « less
  4. Resonance stimulated Raman signal and line shape are evaluated analytically under common electronic/vibrational dephasing and exponential Raman/probe pulse, exp(−|t|/τ). Generally, the signal from a particular state includes contributions from higher and lower electronic states. Thus, with S0 → S1 actinic excitation, the Raman signal consists of 15 Feynman diagrams entering with different signs. The negative sign indicates vibrational coherences in S1 or higher Sn, whereas the positive sign reveals coherences in S0 or Sn via S1 → Sn → Sm (n < m) coupling. The signal complexity is in contrast to spontaneous Raman with its single diagram only. The results are applied to femtosecond stimulated Raman spectra of trans–trans, cis–trans (ct), and cis–cis (cc) 1,4-diphenyl-1,3-butadiene, the ct and cc being reported for the first time. Upon actinic excitation, the Stokes spectra show negative bands from S1 or Sn. When approaching higher resonances Sn → Sm, some Raman bands switch their sign from negative to positive, thus, indicating new coherences in Sn. The results are discussed, and the measured Raman spectra are compared to the computed quantum-chemical spectra. 
    more » « less