Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Rapid mixing is a critical step in many nanoparticle syntheses that can impact the ability to scale production from bench to industrial levels. This study combines experimental and computational approaches to characterize mixing dynamics in crossflow jet mixing reactors (JMRs) with millimeter-scale internal dimensions. The Villermaux-Dushman reaction system is used to quantify experimental mixing times across different reactor sizes and flow rates. Complementary computational fluid dynamics (CFD) simulations assess changes in the state of the flow and estimate mixing times under varying operating conditions. Mixing times derived from CFD results agree well with the experimental results for mixing indices between 0.95 and 0.98. To demonstrate the impact of mixing on nanoparticle formation, we synthesize polybutylacrylate-b-polyacrylic acid (PBA-PAA) block co-polymer nanoparticles, confirming the existence of a critical flow rate beyond which particle size stabilizes. Additionally, we produce polylactic acid-co-glycolic acid (PLGA) nanoparticles incorporating a hydrophobic dye, achieving an average particle size below 300 nm at a throughput of ∼ 1.3 kg/day. These results provide insights into optimizing JMRs for high-throughput, reproducible nanoparticle synthesis, bridging the gap between benchtop and industrial-scale production.more » « lessFree, publicly-accessible full text available July 15, 2026
-
Sustainable food production is a grand challenge facing the global economy. Traditional agricultural practice requires numerous interventions, such as application of nutrients and pesticides, of which only a fraction are utilized by the target crop plants. Controlled release systems (CRSs) designed for agriculture could improve targeting of agrochemicals, reducing costs and improving environmental sustainability. CRSs have been extensively used in biomedical applications to generate spatiotemporal release patterns of targeted compounds. Such systems protect encapsulant molecules from the external environment and off-target uptake, increasing their biodistribution and pharmacokinetic profiles. Advanced ‘smart’ release designs enable on-demand release in response to environmental cues, and theranostic systems combine sensing and release for real-time monitoring of therapeutic interventions. This review examines the history of biomedical CRSs, highlighting opportunities to translate biomedical designs to agricultural applications. Common encapsulants and targets of agricultural CRSs are discussed, as well as additional demands of these systems, such as need for high volume, low cost, environmentally friendly materials and manufacturing processes. Existing agricultural CRSs are reviewed, and opportunities in emerging systems, such as nanoparticle, ‘smart’ release, and theranostic formulations are highlighted. This review is designed to provide a guide to researchers in the biomedical controlled release field for translating their knowledge to agricultural applications, and to provide a brief introduction of biomedical CRSs to experts in soil ecology, microbiology, horticulture, and crop sciences.more » « less
An official website of the United States government
