skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: The Effect of Coupling Between CLUBB Turbulence Scheme and Surface Momentum Flux on Global Wind Simulations
The higher‐order turbulence scheme, Cloud Layers Unified by Binormals (CLUBB), is known for effectively simulating the transition from cumulus to stratocumulus clouds within leading atmospheric climate models. This study investigates an underexplored aspect of CLUBB: its capacity to simulate near‐surface winds and the Planetary Boundary Layer (PBL), with a particular focus on its coupling with surface momentum flux. Using the GFDL atmospheric climate model (AM4), we examine two distinct coupling strategies, distinguished by their handling of surface momentum flux during the CLUBB's stability‐driven substepping performed at each atmospheric time step. The static coupling maintains a constant surface momentum flux, while the dynamic coupling adjusts the surface momentum flux at each CLUBB substep based on the CLUBB‐computed zonal and meridional wind speed tendencies. Our 30‐year present‐day climate simulations (1980–2010) show that static coupling overestimates 10‐m wind speeds compared to both control AM4 simulations and reanalysis, particularly over the Southern Ocean (SO) and other midlatitude ocean regions. Conversely, dynamic coupling corrects the static coupling 10‐m winds biases in the midlatitude regions, resulting in CLUBB simulations achieving there an excellent agreement with AM4 simulations. Furthermore, analysis of PBL vertical profiles over the SO reveals that dynamic coupling reduces downward momentum transport, consistent with the found wind‐speed reductions. Instead, near the tropics, dynamic coupling results in minimal changes in near‐surface wind speeds and associated turbulent momentum transport structure. Notably, the wind turning angle serves as a valuable qualitative metric for assessing the impact of changes in surface momentum flux representation on global circulation patterns.  more » « less
Award ID(s):
1916689
PAR ID:
10539322
Author(s) / Creator(s):
; ; ; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
5
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Improving the prediction of clouds in shallow-cumulus regimes via turbulence parameterization in the planetary boundary layer (PBL) will likely increase the global skill of global climate models (GCMs) because this cloud regime is common over tropical oceans where low-cloud fraction has a large impact on Earth's radiative budget. This study attempts to improve the prediction of PBL structure in tropical trade wind regimes in the Community Atmosphere Model (CAM) by updating its formulation of momentum flux in CLUBB (Cloud Layers Unified by Binormals), which currently does not by default allow for upgradient momentum fluxes. Hindcast CAM output from custom CLUBB configurations which permit countergradient momentum fluxes are compared to in situ observations from weather balloons collected during the ElUcidating the RolE of Cloud–Circulation Coupling in ClimAte and Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (EUREC4A/ATOMIC) field campaign in the tropical Atlantic in early 2020. Comparing a version with CAM–CLUBB with a prognostic treatment of momentum fluxes results in vertical profiles that better match large-eddy simulation results. Countergradient fluxes are frequently simulated between 950 and 850 hPa over the EUREC4A/ATOMIC period in CAM–CLUBB. Further modification to the planetary boundary layer (PBL) parameterization by implementing a more generalized calculation of the turbulent length scale reduces model bias and root mean squared error (RMSE) relative to sounding data when coupled with the prognostic momentum configuration. Benefits are also seen in the diurnal cycle, although more systematic model errors persist. A cursory budget analysis suggests the buoyant production of momentum fluxes, both above and below the jet maximum, significantly contributes to the frequency and depth of countergradient vertical momentum fluxes in the study region. This paper provides evidence that higher-order turbulence parameterizations may offer pathways for improving the simulation of trade wind regimes in global models, particularly when evaluated in a process study framework. 
    more » « less
  2. null (Ed.)
    Abstract. Ground-based measurements of frozen precipitation are heavily influenced by interactions of surface winds with gauge-shield geometry. The Multi-Angle Snowflake Camera (MASC), which photographs hydrometeors in free-fall from three different angles while simultaneously measuring their fall speed, has been used in the field at multiple midlatitude and polar locations both with and without wind shielding. Here, we present an analysis of Arctic field observations – with and without a Belfort double Alter shield – and compare the results to computational fluid dynamics (CFD) simulations of the airflow and corresponding particle trajectories around the unshielded MASC. MASC-measured fall speeds compare well with Ka-band Atmospheric Radiation Measurement (ARM) Zenith Radar (KAZR) mean Doppler velocities only when winds are light (≤5ms-1) and the MASC is shielded. MASC-measured fall speeds that do not match KAZR-measured velocities tend to fall below a threshold value that increases approximately linearly with wind speed but is generally <0.5ms-1. For those events with wind speeds ≤1.5ms-1, hydrometeors fall with an orientation angle mode of 12∘ from the horizontal plane, and large, low-density aggregates are as much as 5 times more likely to be observed. Simulations in the absence of a wind shield show a separation of flow at the upstream side of the instrument, with an upward velocity component just above the aperture, which decreases the mean particle fall speed by 55 % (74 %) for a wind speed of 5 m s−1 (10 m s−1). We conclude that accurate MASC observations of the microphysical, orientation, and fall speed characteristics of snow particles require shielding by a double wind fence and restriction of analysis to events where winds are light (≤5ms-1). Hydrometeors do not generally fall in still air, so adjustments to these properties' distributions within natural turbulence remain to be determined. 
    more » « less
  3. Atmospheric fronts embedded in extratropical cyclones are high‐impact weather phenomena, contributing significantly to mid‐latitude winter precipitation. The three vital characteristics of the atmospheric fronts, high wind speeds, abrupt change in wind direction, and rapid translation, force the induced surface waves to be misaligned with winds exclusively behind the cold fronts. The effects of the misaligned waves under atmospheric cold fronts on air‐sea fluxes remain undocumented. Using the multi‐year in situ near‐surface observations and direct covariance flux measurements from the Pioneer Array off the coast of New England, we find that the majority of the passing cold fronts generate misaligned waves behind the cold front. Once generated, the waves remain misaligned, on average, for about 8 hr. The parameterized effect of misaligned waves in a fully coupled model significantly increases the roughness length (185%), drag coefficient (19%), and air‐sea momentum flux (11%). The increased surface drag reduces the wind speeds in the surface layer. The upward turbulent heat flux is weakly decreased by the misaligned waves because of the decrease in temperature and humidity scaling parameters being greater than the increase in friction velocity. The misaligned wave effect is not accurately represented in a commonly used wave‐based bulk flux algorithm. Yet, considering this effect in the current formulation improves the overall accuracy of parameterized momentum flux estimates. The results imply that better representing a directional wind‐wave coupling in the bulk formula of the numerical models may help improve the air‐sea interaction simulations under the passing atmospheric fronts in the mid‐latitudes. 
    more » « less
  4. Abstract Harvesting of crops in a weakly sloping Midwestern field during the Stable Atmospheric Variability and Transport (SAVANT) observation campaign allowed for a systematic investigation of the influence of surface roughness and static stability magnitude on the applicability of the Monin–Obukhov similarity (MOST) and hockey-stick transition (HOST) theories during stable boundary layer periods. We analyze momentum flux and turbulent velocity scale V TKE in three regimes, defined using the gradient Richardson number Ri and flux Richardson number Ri f as regime 1 (0 < Ri ≤ 0.1 and 0 < Ri f ≤ 0.1), regime 2 (0.1 < Ri ≤ 0.23 and 0.1 < Ri f ≤ 0.23), and regime 3 (both Ri and Ri f > 0.23). After harvest, in regime 1, stability varied from near-neutral to weakly stable and both MOST and HOST were applicable to estimate the momentum fluxes and V TKE as a function of mean wind speed. In regime 2, the momentum flux deviated from the MOST linear relationship as stability increased. In regimes 1 and 2, a HOST-defined threshold wind speed V s was identified beyond which V TKE increased linearly with wind speed at a rate of 0.26 for all observation heights. Below this threshold wind speed, V TKE behaved independent of mean wind and observation heights. Alternatively, for preharvest periods, MOST was applicable in regimes 1 and 2 for all heights and HOST was applicable with reduced V s for heights above the crop layer. Regime 3 during pre- and postharvest consisted of strongly stable periods and very weak to weak winds, where MOST was found to be invalid and V TKE remained low and independent of wind speed. The results suggest that roughness due to crops enhances the turbulence generation at lower wind speeds. 
    more » « less
  5. The parameterization of subgrid‐scale processes such as boundary layer (PBL) turbulence introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate existing biases in representing key physical processes. This study analyzes the influence of tunable parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community ESM version 2 (CESM2). We perform the Morris one‐at‐a‐time (MOAT) parameter sensitivity analysis using short‐term (3‐day), initialized hindcasts of CAM6‐CLUBBX with 24 unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential for various regionally‐averaged quantities, namely surface stress and shortwave cloud forcing (SWCF). These parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential in regions of high vertical wind shear (e.g., the mid‐latitude storm tracks). We next evaluate several experimental 20‐year simulations of CAM6‐CLUBBX with targeted parameter perturbations. We find that parameter perturbations produce similar physical mechanisms in both short‐term and long‐term simulations, but these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than 3 days, thus causing differences in how output metrics respond in the long‐term simulations. Analysis of turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and momentum, providing physical pathways for the sensitivities identified in this study. 
    more » « less