skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: A Method for Interpreting the Role of Parameterized Turbulence on Global Metrics in the Community Earth System Model
The parameterization of subgrid‐scale processes such as boundary layer (PBL) turbulence introduces uncertainty in Earth System Model (ESM) results. This uncertainty can contribute to or exacerbate existing biases in representing key physical processes. This study analyzes the influence of tunable parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBBX) scheme. CLUBB is the operational PBL parameterization in the Community Atmosphere Model version 6 (CAM6), the atmospheric component of the Community ESM version 2 (CESM2). We perform the Morris one‐at‐a‐time (MOAT) parameter sensitivity analysis using short‐term (3‐day), initialized hindcasts of CAM6‐CLUBBX with 24 unique initial conditions. Several input parameters modulating vertical momentum flux appear most influential for various regionally‐averaged quantities, namely surface stress and shortwave cloud forcing (SWCF). These parameter sensitivities have a spatial dependence, with parameters governing momentum flux most influential in regions of high vertical wind shear (e.g., the mid‐latitude storm tracks). We next evaluate several experimental 20‐year simulations of CAM6‐CLUBBX with targeted parameter perturbations. We find that parameter perturbations produce similar physical mechanisms in both short‐term and long‐term simulations, but these physical responses can be muted due to nonlinear feedbacks manifesting over time scales longer than 3 days, thus causing differences in how output metrics respond in the long‐term simulations. Analysis of turbulent fluxes in CLUBBX indicates that the influential parameters affect vertical fluxes of heat, moisture, and momentum, providing physical pathways for the sensitivities identified in this study.  more » « less
Award ID(s):
1916689
PAR ID:
10631140
Author(s) / Creator(s):
; ;
Publisher / Repository:
American Geophysical Union
Date Published:
Journal Name:
Journal of Advances in Modeling Earth Systems
Volume:
16
Issue:
10
ISSN:
1942-2466
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. Recent studies have demonstrated that high-resolution (∼25 km) Earth System Models (ESMs) have the potential to skillfully predict tropical cyclone (TC) occurrence and intensity. However, biases in ESM TCs still exist, largely due to the need to parameterize processes such as boundary layer (PBL) turbulence. Building on past studies, we hypothesize that the depiction of the TC PBL in ESMs is sensitive to the configuration of the PBL parameterization scheme, and that the targeted perturbation of tunable parameters can reduce biases. The Morris one-at-a-time (MOAT) method is implemented to assess the sensitivity of the TC PBL to tunable parameters in the PBL scheme in an idealized configuration of the Community Atmosphere Model, version 6 (CAM6). The MOAT method objectively identifies several parameters in an experimental version of the Cloud Layers Unified by Binormals (CLUBB) scheme that appreciably influence the structure of the TC PBL. We then perturb the parameters identified by the MOAT method within a suite of CAM6 ensemble simulations and find a reduction in model biases compared to observations and a high-resolution, cloud-resolving model. We demonstrate that the high-sensitivity parameters are tied to PBL processes that reduce turbulent mixing and effective eddy diffusivity, and that in CAM6 these parameters alter the TC PBL in a manner consistent with past modeling studies. In this way, we provide an initial identification of process-based input parameters that, when altered, have the potential to improve TC predictions by ESMs. 
    more » « less
  2. Improving the prediction of clouds in shallow-cumulus regimes via turbulence parameterization in the planetary boundary layer (PBL) will likely increase the global skill of global climate models (GCMs) because this cloud regime is common over tropical oceans where low-cloud fraction has a large impact on Earth's radiative budget. This study attempts to improve the prediction of PBL structure in tropical trade wind regimes in the Community Atmosphere Model (CAM) by updating its formulation of momentum flux in CLUBB (Cloud Layers Unified by Binormals), which currently does not by default allow for upgradient momentum fluxes. Hindcast CAM output from custom CLUBB configurations which permit countergradient momentum fluxes are compared to in situ observations from weather balloons collected during the ElUcidating the RolE of Cloud–Circulation Coupling in ClimAte and Atlantic Tradewind Ocean–Atmosphere Mesoscale Interaction Campaign (EUREC4A/ATOMIC) field campaign in the tropical Atlantic in early 2020. Comparing a version with CAM–CLUBB with a prognostic treatment of momentum fluxes results in vertical profiles that better match large-eddy simulation results. Countergradient fluxes are frequently simulated between 950 and 850 hPa over the EUREC4A/ATOMIC period in CAM–CLUBB. Further modification to the planetary boundary layer (PBL) parameterization by implementing a more generalized calculation of the turbulent length scale reduces model bias and root mean squared error (RMSE) relative to sounding data when coupled with the prognostic momentum configuration. Benefits are also seen in the diurnal cycle, although more systematic model errors persist. A cursory budget analysis suggests the buoyant production of momentum fluxes, both above and below the jet maximum, significantly contributes to the frequency and depth of countergradient vertical momentum fluxes in the study region. This paper provides evidence that higher-order turbulence parameterizations may offer pathways for improving the simulation of trade wind regimes in global models, particularly when evaluated in a process study framework. 
    more » « less
  3. Abstract Characteristics of, and fundamental differences between, the radiative‐convective equilibrium (RCE) climate states following the Radiative‐Convective Equilibrium Model Intercomparison Project (RCEMIP) protocols in the Community Atmosphere Model version 5 (CAM5) and version 6 (CAM6) are presented. This paper explores the characteristics of clouds, moisture, precipitation and circulation in the RCE state, as well as the tropical response to surface warming, in CAM5 and CAM6 with different parameterizations. Overall, CAM5 simulates higher precipitation rates that result in larger global average precipitation, despite lower outgoing longwave radiation compared to CAM6. Differences in the structure of clouds, particularly the amount and vertical location of cloud liquid, exist between the CAM versions and can, in part, be related to distinct representations of shallow convection and boundary layer processes. Both CAM5 and CAM6 simulate similar peaks in cloud fraction, relative humidity, and cloud ice, linked to the usage of a similar deep convection parameterization. These anvil clouds rise and decrease in extent in response to surface warming. More generally, extreme precipitation, aggregation of convection, and climate sensitivity increase with warming in both CAM5 and CAM6. This analysis provides a benchmark for future studies that explore clouds, convection, and climate in CAM with the RCEMIP protocols now available in the Community Earth System Model. These results are discussed within the context of realistic climate simulations using CAM5 and CAM6, highlighting the usefulness of a hierarchical modeling approach to understanding model and parameterization sensitivities to inform model development efforts. 
    more » « less
  4. Abstract. There has been a growing concern that most climate models predict precipitation that is too frequent, likely due to lack of reliable subgrid variabilityand vertical variations in microphysical processes in low-level warm clouds.In this study, the warm-cloud physics parameterizations in the singe-columnconfigurations of NCAR Community Atmospheric Model version 6 and 5 (SCAM6and SCAM5, respectively) are evaluated using ground-based and airborneobservations from the Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Aerosol and Cloud Experiments in the EasternNorth Atlantic (ACE-ENA) field campaign near the Azores islands during2017–2018. The 8-month single-column model (SCM) simulations show that both SCAM6 and SCAM5 cangenerally reproduce marine boundary layer cloud structure, majormacrophysical properties, and their transition. The improvement in warm-cloud properties from the Community Atmospheric Model 5 and 6 (CAM5 to CAM6) physics can be found through comparison with the observations. Meanwhile, both physical schemes underestimate cloud liquidwater content, cloud droplet size, and rain liquid water content butoverestimate surface rainfall. Modeled cloud condensation nuclei (CCN)concentrations are comparable with aircraft-observed ones in the summer but areoverestimated by a factor of 2 in winter, largely due to the biases in thelong-range transport of anthropogenic aerosols like sulfate. We also testthe newly recalibrated autoconversion and accretion parameterizations thataccount for vertical variations in droplet size. Compared to theobservations, more significant improvement is found in SCAM5 than in SCAM6.This result is likely explained by the introduction of subgrid variationsin cloud properties in CAM6 cloud microphysics, which further suppresses thescheme's sensitivity to individual warm-rain microphysical parameters. Thepredicted cloud susceptibilities to CCN perturbations in CAM6 are within areasonable range, indicating significant progress since CAM5 which produces anaerosol indirect effect that is too strong. The present study emphasizes theimportance of understanding biases in cloud physics parameterizations bycombining SCM with in situ observations. 
    more » « less
  5. null (Ed.)
    This paper reviews the evolution of planetary boundary layer (PBL) parameterization schemes that have been used in the operational version of the Hurricane Weather Research and Forecasting (HWRF) model since 2011. Idealized simulations are then used to evaluate the effects of different PBL schemes on hurricane structure and intensity. The original Global Forecast System (GFS) PBL scheme in the 2011 version of HWRF produces the weakest storm, while a modified GFS scheme using a wind-speed dependent parameterization of vertical eddy diffusivity (Km) produces the strongest storm. The subsequent version of the hybrid eddy diffusivity and mass flux scheme (EDMF) used in HWRF also produces a strong storm, similar to the version using the wind-speed dependent Km. Both the intensity change rate and maximum intensity of the simulated storms vary with different PBL schemes, mainly due to differences in the parameterization of Km. The smaller the Km in the PBL scheme, the faster a storm tends to intensify. Differences in hurricane PBL height, convergence, inflow angle, warm-core structure, distribution of deep convection, and agradient force in these simulations are also examined. Compared to dropsonde and Doppler radar composites, improvements in the kinematic structure are found in simulations using the wind-speed dependent Km and modified EDMF schemes relative to those with earlier versions of the PBL schemes in HWRF. However, the upper boundary layer in all simulations is much cooler and drier than that in dropsonde observations. This model deficiency needs to be considered and corrected in future model physics upgrades. 
    more » « less