Electron density irregularities in the ionosphere modify the phase and amplitude of trans-ionospheric radio signals. We aim to characterize the spectral and morphological features of E- and F-region ionospheric irregularities likely to produce these fluctuations or “scintillations”. To characterize them, we use a three-dimensional radio wave propagation model—“Satellite-beacon Ionospheric scintillation Global Model of upper Atmosphere” (SIGMA), along with the scintillation measurements observed by a cluster of six Global Positioning System (GPS) receivers called Scintillation Auroral GPS Array (SAGA) at Poker Flat, AK. An inverse method is used to derive the parameters that describe the irregularities by estimating the best fit of model outputs to GPS observations. We analyze in detail one E-region and two F-region events during geomagnetically active times and determine the E- and F-region irregularity characteristics using two different spectral models as input to SIGMA. Our results from the spectral analysis show that the E-region irregularities are more elongated along the magnetic field lines with rod-shaped structures, while the F-region irregularities have wing-like structures with irregularities extending both along and across the magnetic field lines. We also found that the spectral index of the E-region event is less than the spectral index of the F-region events. Additionally, the spectral slope on the ground at higher frequencies is less than the spectral slope at irregularity height. This study describes distinctive morphological and spectral features of irregularities at E- and F-regions for a handful of cases performed using a full 3D propagation model coupled with GPS observations and inversion.
more »
« less
This content will become publicly available on July 1, 2025
Model‐Based Investigation of Electron Precipitation‐Driven Density Structures and Their Effects on Auroral Scintillation
Abstract Electron density irregularities in the ionosphere can give rise to scintillations, affecting radio wave phase and amplitude. While scintillations in the cusp and polar cap regions are commonly associated with mesoscale density inhomogeneities and/or shearing, the auroral regions exhibit a strong correlation between scintillation and density structures generated by electron precipitation (arcs). We aim to examine the impact of electron precipitation on the formation of scintillation‐producing density structures using a high‐resolution physics‐based plasma model, the “Geospace Environment Model of Ion‐Neutral Interactions,” coupled with a radio propagation model, the “Satellite‐beacon Ionospheric‐scintillation Global Model of the upper Atmosphere.” Specifically, we explore the effects of varying spatial and temporal characteristics of the precipitation, including electron total energy flux and their characteristic energies, obtained from the all‐sky‐imagers and Poker Flat Incoherent Scatter Radar observations, on auroral scintillation. To capture small‐scale structures, we incorporate a power‐law turbulence spectrum that induces short wavelength features sensitive to scintillation. Finally, we compare our simulated scintillation results with satellite‐observed scintillations, along with spectral comparisons.
more »
« less
- Award ID(s):
- 1907698
- PAR ID:
- 10539341
- Publisher / Repository:
- Journal of Geophysical Research
- Date Published:
- Journal Name:
- Journal of Geophysical Research: Space Physics
- Volume:
- 129
- Issue:
- 7
- ISSN:
- 2169-9380
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Abstract To date, the search for radio technosignatures has focused on sky location as a primary discriminant between technosignature candidates and anthropogenic radio frequency interference (RFI). In this work, we investigate the possibility of searching for technosignatures by identifying the presence and nature of intensity scintillations arising from the turbulent, ionized plasma of the interstellar medium. Past works have detailed how interstellar scattering can both enhance and diminish the detectability of narrowband radio signals. We use the NE2001 Galactic free electron density model to estimate scintillation timescales to which narrowband signal searches would be sensitive, and discuss ways in which we might practically detect strong intensity scintillations in detected signals. We further analyze the RFI environment of the Robert C. Byrd Green Bank Telescope with the proposed methodology and comment on the feasibility of using scintillation as a filter for technosignature candidates.more » « less
-
Abstract This paper surveys six years of Global Positioning System (GPS) L1 and L2C ionospheric scintillation in the auroral zone and, with a collocated incoherent scatter radar, hypothesizes the ionospheric irregularity layer. The Scintillation Auroral GPS Array of six scintillation receivers is sited at Poker Flat Research Range, Alaska, as is the Poker Flat incoherent scatter radar (PFISR). Scintillation intervals are identified across at least four receivers of the array using S4 and sigma phi (σϕ) indices at 100 s cadence. Classification as “amplitude,” “phase,” or “both‐phase‐and‐amplitude” scintillation is performed by analyzing common time intervals of elevated S4 andσϕ. Scattering of Global Navigation Satellite System (GNSS) waves by refractive or diffractive effects is hypothesized to occur in the E or F layer, or a transition layer in between, based on the PFISR peak density altitude at the time of the scintillation event. We analyze the statistics of the irregularity layer from 2014 to 2019, spanning solar maximum to solar minimum. We find fewer scintillation events per day with the waning solar cycle, nearly all of them phase scintillations. We also find that the percentage of events hypothesized to be caused by irregularities in the E layer increases with the declining solar cycle. The local time dependence of phase scintillations is primarily at night and in the E layer. Phase scintillation events occurring during daytime occur at solar maximum and are nearly all in the F layer. The majority of the events containing amplitude scintillations are daytime F layer at solar maximum (2014).more » « less
-
Abstract While low and high‐latitude ionospheric scintillation have been extensively reported, significantly less information is available about the properties of and conditions leading to mid‐latitude scintillations. Here, we report and discuss scintillation observations made in the Southern United States (UT Dallas, 32.99°N, 96.76°W, 43.2°N dip latitude) on June 1st, 2013. The measurements were made by a specialized dual‐frequency GPS‐based scintillation monitor which allowed us to determine main properties of this mid‐latitude scintillation event. Additionally, simultaneous airglow observations and ionospheric total electron content (TEC) maps provided insight on the conditions leading to observed scintillations. Moderate amplitude scintillations (S4>∼0.4) occurred in both L1 and L2C signals, and severe (S4 > ∼0.8) events occurred in L2C signals at low (<30°) elevation angles. Phase scintillation accompanied amplitude fadings, with maximum σϕvalues exceeding 0.5 radians in L2C. We also show that the observed phase scintillation magnitudes increased with amplitude scintillation severity. Decorrelation times were mostly between 0.25 and 1.25 s, with mean value around 0.65 s for both L1 and L2C. Frequency scaling of S4matched fairly well the predictions of weak scattering theory but held for observations of moderate and strong amplitude scintillation as well. Scintillation occurred during the main phase of a modest magnetic storm that, nevertheless, prompted an extreme equatorward movement of the mid‐latitude trough and large background TEC enhancements over the US. Scintillations, however, occurred within TEC and airglow depletions observed over Texas. Finally, scintillation properties including severity and rapidity, and associated TEC signatures are comparable to those associated with equatorial spread F.more » « less
-
Abstract Evolution of large‐scale and fine‐scale plasmaspheric plume density structures was examined using space‐ground coordinated observations of a plume during the 7–8 September 2015 storm. The large‐scale plasmaspheric plume density at Van Allen Probes A was roughly proportional to the total electron content (TEC) along the satellite footprint, indicating that TEC distribution represents the large‐scale plume density distribution in the magnetosphere. The plasmaspheric plume contained fine‐scale density structures and subauroral polarization streams (SAPS) velocity fluctuations. High‐resolution TEC data support the interpretation that the fine‐scale plume structures were blobs with ∼300 km size and ∼500–800 m/s in the ionosphere (∼3,000 km size and ∼5–8 km/s speed in the magnetosphere), emerging at the plume base and drifting to the plume. The short‐baseline Global Navigation Satellite System receivers detected smaller‐scale (∼10 km in the ionosphere, ∼100 km in the magnetosphere) TEC gradients and their sunward drift. Fine‐scale density structures were associated with enhanced phase scintillation index. Velocity fluctuations were found to be spatial structures of fine‐scale SAPS flows that drifted sunward with density irregularities down to ∼10 s of meter‐scale. Fine‐scale density structures followed a power law with a slope of ∼−5/3, and smaller‐scale density structures developed slower than the larger‐scale structures. We suggest that turbulent SAPS flows created fine‐scale density structures and their cascading to smaller scales. We also found that the plume fine‐scale density structures were associated with whistler‐mode intensity modulation, and localized electron precipitation in the plume. Structured precipitation in the plume may contribute to ionospheric heating, SAPS velocity reduction, and conductance enhancements.more » « less