skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Title: Magnetic Properties Evaluation of Polyamide 4.6 Bonded Magnetic Composite
Bonded magnetic composites combine the cost-effectiveness, low density, and manufacturing flexibility of conventional polymer binders with the unique magnetic characteristics of magnetic powders/fillers to form multifunctional magneto polymeric composites that offer superior properties to conventional sintered magnets. In this study, a co-rotating twin screw extruder was used to fabricate 20 and 40 wt.% strontium ferrite/polyamide 4.6 bonded magnetic composites viable for fused filament fabrication 3D printing. The characterization conducted on the bonded magnetic composites was scanning electron microscopy, simultaneous differential thermogravimetry, and vibrating sample magnetometry. The microstructure of the bonded composite exhibited a uniform platelet morphology of the strontium ferrite magnetic particles. There was no observable depreciation in the melting transitions, which suggests a thermally resistant magnetic composite. An appreciable increment in % crystallinity of 13 and 20% for 20wt. % and 40wt. % strontium ferrites bonded magnets were observed. This is attributable to the heterogeneous nucleation phenomenon, where the metal powders act as nucleation sites for increased crystalline domains. The bonded composite exhibited significant magnetic anisotropy, with the remanence (Mr), which is the most important property for magnetic application significantly increasing to 49.8% along the easy direction in comparison to the hard axis. This suggests the viability of the fabricated bonded composites in viable in producing anisotropic bonded magnetic devices, which are considered to exhibit stronger magnetic properties.  more » « less
Award ID(s):
2216440
PAR ID:
10539441
Author(s) / Creator(s):
; ; ; ; ; ; ;
Publisher / Repository:
NA SAMPE
Date Published:
ISBN:
978-1-934551-45-5
Subject(s) / Keyword(s):
Strontium ferrites, Polyamide 4. 6, Bonded Magnet, Twin screw technology, Fused filament fabrication, Materials characterization.
Format(s):
Medium: X
Sponsoring Org:
National Science Foundation
More Like this
  1. The primary advantage of the high energy ball milling (HEBM) process is its ability to synthesize a homogeneous mixture with submicron (up to nanoscale) particle size. This approach is a viable process for particle size reduction and grain refinement of magnetic powders, which affects their domain structure and by extension the resulting magnetic properties. In this research, we designed a 9-ball milling experiment by keeping the rotational speed constant at 300rpm and varying the ball-to-powder ratio of 5:1, 8:1, and 10:1 for 6hrs, lOhrs, and 14hrs milling times. The strontium ferrite magnetic powders subjected to HEBM were analyzed for crystallite size and behavior via XRD, particle size reduction via SEM/ImageJ software/originLabPro, and magnetic performance via powder-based VSM measurement. The magnetic performance of the ball-milled strontium ferrite powders shows a good combination of appreciable increment in the S-values (a ratio of the remanence to saturation magnetization) and a considerable decline in coercivity (<10% decrease) at 6hrs of milling duration. The particle size obtained at 6hr-8:1BPR is 0.59 µm with about 44% reduction from the 1.05 µm particle size of the unmilled strontium ferrites, which is within the reported single-domain particle critical size (0.5 µm - 0.65 µm). The particle size reduction of 0.59 µm at 6hr-8: lBPR would be beneficial in enabling strong interfacial bonding when the ball­milled strontium ferrite powders are used in polymer-bonded magnets. 
    more » « less
  2. Zheng, Hao (Ed.)
    Thermoplastic bonded magnetic composites combine the cost-effectiveness, low mass density, and manufacturing flexibility of conventional thermoplastics with the unique characteristics of magnetic powders/ fillers to form multifunctional magneto polymeric composites that offer superior properties to conventional materials. At elevated temperatures, the magnetic properties change significantly, and the polymer matrix no longer secures the magnetic particles and can rotate freely with respect to an externally applied magnetic field. This often happens at temperatures significantly below the melting point of the polymer. To extend the thermal window of bonded magnets beyond 175 ◦C (the typical temperature of rotors in motors and generators), poly- mers such as polyetheretherketone (PEEK), polyetherimide (PEI), or other high-temperature thermoplastics have been considered suitable binders for magnetic fillers. Another suggested approach is using a surface treatment to increase the adhesion between the polymer matrix and magnetic particles. In this review, the fabrication pro- cesses to make bonded magnets by injection molding and fused filament fabrication were discussed as well as their thermal, mechanical, and magnetic performance obtained via analytical and materials characterization methods. The magnetic properties of bonded permanent magnets manufactured via different techniques were discussed in terms of the most important single magnetic parameter known as “the maximum energy product- (BH)max, which can serve as a performance index for manufacturing bonded magnets. The energy product normalized on cost or mass density are used to provide insight on the performance of bonded magnets for ap- plications driven by cost or inertia. Finally, applications of high-performance thermoplastic-based magnetic composites that can be viable for stringent engineering devices such as sensors, actuators, motors, and generators were highlighted. 
    more » « less
  3. Magnetic Field Assisted Additive Manufacturing (MFAAM), 3D printing in a magnetic field, has the potential to fabricate high magnetic strength anisotropic bonded magnets. Here, 10, 35, and 54 wt% strontium ferrite bonded magnets using polyamide 12 binder were developed by twin screw compounding process and then printed via MFAAM samples in zero, and in 0.5 Tesla (H parallel to the print direction and print bed). The hysteresis curves were measured using a MicroSense EZ9 Vibrating Sample Magnetometer (VSM) for 3 different mount orientations of the sample on the sample holder to explore the magnetic anisotropy. The samples printed in zero field exhibited a weak anisotropy with an easy axis perpendicular to the print direction. This anisotropy is caused by the effect of shear flow on the orientation of the magnetic platelets in the 3D printer head. For the MFAAM samples, the S values are largest along the print bed normal. This anisotropy is caused by the field. The alignment of the magnetic particles happens when the molten suspension is in the extruder. When the material is printed, it is folded over on the print bed and its easy axis rotates 90° parallel to the print bed normally. Little realignment of the particles happens after it is printed, suggesting a sharp drop in temperature once the composite touches the print bed, indicating that field-induced effects in the nozzle dominate the anisotropy of MFAAM deposited samples. 
    more » « less
  4. Cobalt ferrite (CoFe2O4)/barium titanate (BaTiO3) particulate composites exhibiting high magnetoelectric coefficients were synthesized from low-cost commercial precursors using mechanical ball milling followed by high-temperature annealing. CoFe2O4 (20 nm–50 nm) and either cubic or tetragonal BaTiO3 nanoparticle powders were used for the synthesis. It was found that utilizing a 50 nm cubic BaTiO3 powder as a precursor results in a composite with a magnetoelectric coupling coefficient value as high as 4.3 mV/Oe cm, which is comparable to those of chemically synthesized core–shell CoFe2O4–BaTiO3 nanoparticles. The microstructure of these composites is dramatically different from the composite synthesized using 200 nm tetragonal BaTiO3 powder. CoFe2O4 grains in the composite prepared using cubic BaTiO3 powder are larger (by at least an order of magnitude) and significantly better electrically insulated from each other by the surrounding BaTiO3 matrix, which results in a high electrical resistivity material. It is hypothesized that mechanical coupling between larger CoFe2O4 grains well embedded in a BaTiO3 matrix in combination with high electrical resistivity of the material enhances the observed magnetoelectric effect. 
    more » « less
  5. The magnetoelectric effect (ME) is an important strain mediated-phenomenon in a ferromagnetic-piezoelectric composite for a variety of sensors and signal processing devices. A bias magnetic field, in general, is essential to realize a strong ME coupling in most composites. Magnetic phases with (i) high magnetostriction for strong piezomagnetic coupling and (ii) large anisotropy field that acts as a built-in bias field are preferred so that miniature, ME composite-based devices can operate without the need for an external magnetic field. We are able to realize such a magnetic phase with a composite of (i) barium hexaferrite (BaM) with high magnetocrystalline anisotropy field and (ii) nickel ferrite (NFO) with high magnetostriction. The BNx composites, with (100 − x) wt.% of BaM and x wt.% NFO, for x = 0–100, were prepared. X-ray diffraction analysis shows that the composites did not contain any impurity phases. Scanning electron microscopy images revealed that, with an increase in NFO content, hexagonal BaM grains become prominent, leading to a large anisotropy field. The room temperature saturation magnetization showed a general increase with increasing BaM content in the composites. NFO rich composites with x ≥ 60 were found to have a large magnetostriction value of around −23 ppm, comparable to pure NFO. The anisotropy field HA of the composites, determined from magnetization and ferromagnetic resonance (FMR) measurements, increased with increasing NFO content and reached a maximum of 7.77 kOe for x = 75. The BNx composite was cut into rectangular platelets and bonded with PZT to form the bilayers. ME voltage coefficient (MEVC) measurements at low frequencies and at mechanical resonance showed strong coupling at zero bias for samples with x ≥ 33. This large in-plane HA acted as a built-in field for strong ME effects under zero external bias in the bilayers. The highest zero-bias MEVC of ~22 mV/cm Oe was obtained for BN75-PZT bilayers wherein BN75 also has the highest HA. The Bilayer of BN95-PZT showed a maximum MEVC ~992 mV/cm Oe at electromechanical resonance at 59 kHz. The use of hexaferrite–spinel ferrite composite to achieve strong zero-bias ME coupling in bilayers with PZT is significant for applications related to energy harvesting, sensors, and high frequency devices. 
    more » « less