Bismuth ferrite (BiFeO3) nanocomposites were synthesized using a novel nano-agitator bead milling method followed by calcination. Bismuth oxide and iron oxide nanoparticles were mixed in a stoichiometric ratio and milled for 3 h and calcined at 650 °C in air. X-ray diffraction with Rietveld refinement, scanning electron microscopy, and transmission electron microscopy techniques were used to elucidate the structure of BiFeO3. The particle diameter was found to be ∼17 nm. Magnetic and electrical measurements were performed, and these results were compared with those of similar methods. Mostly, BiFeO3 was obtained with minor secondary phase formation. The resulting powder was weakly ferromagnetic with a remnant magnetization of 0.078 emu/g. This can be attributed to residual strain and defects introduced during the milling process. Electrical testing revealed a high leakage current density that is typical of undoped bismuth ferrite.
more »
« less
Effect of Ball Milling on the Magnetic Performance of Strontium Ferrite (SrFe12O19) Powders
The primary advantage of the high energy ball milling (HEBM) process is its ability to synthesize a homogeneous mixture with submicron (up to nanoscale) particle size. This approach is a viable process for particle size reduction and grain refinement of magnetic powders, which affects their domain structure and by extension the resulting magnetic properties. In this research, we designed a 9-ball milling experiment by keeping the rotational speed constant at 300rpm and varying the ball-to-powder ratio of 5:1, 8:1, and 10:1 for 6hrs, lOhrs, and 14hrs milling times. The strontium ferrite magnetic powders subjected to HEBM were analyzed for crystallite size and behavior via XRD, particle size reduction via SEM/ImageJ software/originLabPro, and magnetic performance via powder-based VSM measurement. The magnetic performance of the ball-milled strontium ferrite powders shows a good combination of appreciable increment in the S-values (a ratio of the remanence to saturation magnetization) and a considerable decline in coercivity (<10% decrease) at 6hrs of milling duration. The particle size obtained at 6hr-8:1BPR is 0.59 µm with about 44% reduction from the 1.05 µm particle size of the unmilled strontium ferrites, which is within the reported single-domain particle critical size (0.5 µm - 0.65 µm). The particle size reduction of 0.59 µm at 6hr-8: lBPR would be beneficial in enabling strong interfacial bonding when the ballmilled strontium ferrite powders are used in polymer-bonded magnets.
more »
« less
- Award ID(s):
- 2216440
- PAR ID:
- 10539439
- Publisher / Repository:
- NA SAMPE
- Date Published:
- ISBN:
- 978-1-934551-45-5
- Subject(s) / Keyword(s):
- Strontium ferrite, High Energy Ball Milling, Milling Parameters, Magnetic domain structure - single and complex, Vibrating Sample Magnetometer
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Shell printing is an advantageous binder jetting technique that prints only a thin shell of the intended object to enclose the loose powder in the core. In this study, powder packing in the shell and core was investigated for the first time. By examining the density and microstructure of the printed samples, powder packing was found to be different between the shell and core. In addition, the powder particle size and layer thickness were found to affect the powder packing in the shell and core differently. At a 200 µm layer thickness, for the 10 µm and 20 µm powders, the core was less dense than the shell and had a layered microstructure. At a 200 µm layer thickness, for the 70 µm powder, the core was denser and had a homogeneous microstructure. For the 20 µm powder, by reducing the layer thickness from 200 µm to 70 µm, the core became denser than the shell, and the microstructure of the core became homogeneous. The different results could be attributed to the different scenarios of particle rearrangement between the shell and core for powders of different particle sizes and at different layer thicknesses. Considering that the core was denser and more homogeneous than the shell when the proper layer thickness and powder particle size were selected, shell printing could be a promising method to tailor density and reduce anisotropy.more » « less
-
Purpose: To investigate the effect of dry coating the amount and type of silica on powder flowability enhancement using a comprehensive set of 19 pharmaceutical powders having different sizes, surface roughness, morphology, and aspect ratios, as well as assess flow predictability via Bond number estimated using a mechanistic multi-asperity particle contact model. Method: Particle size, shape, density, surface energy and area, SEM-based morphology, and FFC were assessed for all powders. Hydrophobic (R972P) or hydrophilic (A200) nano-silica were dry coated for each powder at 25%, 50%, and 100% surface area coverage (SAC). Flow predictability was assessed via particle size and Bond number. Results: Nearly maximal flow enhancement, one or more flow category, was observed for all powders at 50% SAC of either type of silica, equivalent to 1 wt% or less for both the hydrophobic R972P or hydrophilic A200, while R972P generally performed slightly better. Silica amount as SAC better helped understand the relative performance. The power-law relation between FFC and Bond number was observed. Conclusion: Significant flow enhancements were achieved at 50% SAC, validating previous models. Most uncoated very cohesive powders improved by two flow categories, attaining easy flow. Flowability could not be predicted for both the uncoated and dry coated powders via particle size alone. Prediction was significantly better using Bond number computed via the mechanistic multi-asperity particle contact model accounting for the particle size, surface energy, roughness, and the amount and type of silica. The widely accepted 200 nm surface roughness was not valid for most pharmaceutical powders.more » « less
-
Cobalt ferrite (CoFe2O4)/barium titanate (BaTiO3) particulate composites exhibiting high magnetoelectric coefficients were synthesized from low-cost commercial precursors using mechanical ball milling followed by high-temperature annealing. CoFe2O4 (20 nm–50 nm) and either cubic or tetragonal BaTiO3 nanoparticle powders were used for the synthesis. It was found that utilizing a 50 nm cubic BaTiO3 powder as a precursor results in a composite with a magnetoelectric coupling coefficient value as high as 4.3 mV/Oe cm, which is comparable to those of chemically synthesized core–shell CoFe2O4–BaTiO3 nanoparticles. The microstructure of these composites is dramatically different from the composite synthesized using 200 nm tetragonal BaTiO3 powder. CoFe2O4 grains in the composite prepared using cubic BaTiO3 powder are larger (by at least an order of magnitude) and significantly better electrically insulated from each other by the surrounding BaTiO3 matrix, which results in a high electrical resistivity material. It is hypothesized that mechanical coupling between larger CoFe2O4 grains well embedded in a BaTiO3 matrix in combination with high electrical resistivity of the material enhances the observed magnetoelectric effect.more » « less
-
Bonded magnetic composites combine the cost-effectiveness, low density, and manufacturing flexibility of conventional polymer binders with the unique magnetic characteristics of magnetic powders/fillers to form multifunctional magneto polymeric composites that offer superior properties to conventional sintered magnets. In this study, a co-rotating twin screw extruder was used to fabricate 20 and 40 wt.% strontium ferrite/polyamide 4.6 bonded magnetic composites viable for fused filament fabrication 3D printing. The characterization conducted on the bonded magnetic composites was scanning electron microscopy, simultaneous differential thermogravimetry, and vibrating sample magnetometry. The microstructure of the bonded composite exhibited a uniform platelet morphology of the strontium ferrite magnetic particles. There was no observable depreciation in the melting transitions, which suggests a thermally resistant magnetic composite. An appreciable increment in % crystallinity of 13 and 20% for 20wt. % and 40wt. % strontium ferrites bonded magnets were observed. This is attributable to the heterogeneous nucleation phenomenon, where the metal powders act as nucleation sites for increased crystalline domains. The bonded composite exhibited significant magnetic anisotropy, with the remanence (Mr), which is the most important property for magnetic application significantly increasing to 49.8% along the easy direction in comparison to the hard axis. This suggests the viability of the fabricated bonded composites in viable in producing anisotropic bonded magnetic devices, which are considered to exhibit stronger magnetic properties.more » « less
An official website of the United States government

