Tropical montane cloud forests (TMCFs) are ecosystems with high biodiversity that are threatened by deforestation, land use changes, and climate change. One of the unique aspects of TMCFs is the high biomass and diversity of epiphytes. Epiphytes are vascular and non-vascular plants that live in tree canopies, creating arboreal micro-ecosystems. They provide ecological services by capturing and retaining allochthonous nutrients from rain and fog, and by supporting the presence of canopy pollinators and other fauna. Predicted changes in cloudiness and land conversion threaten the abundance of epiphytes, and thus their capacity to contribute to ecosystem functions. However, how losses in epiphyte abundance will affect microclimate and host tree water status is still unclear and requires the ability to simulate the role of epiphytes in canopy water storage dynamics. We developed a water balance model for epiphytes in TMCFs. We consider epiphytes in the host tree as a water store inside the canopy that is filled via precipitation from both rain and fog, and depleted via evapotranspiration and host tree water uptake. The model was used to simulate water and energy fluxes between the epiphytes and their surroundings under idealized and real dry season conditions for TMCFs near Monteverde, Costa Rica. Results from the idealized and real simulations capture how epiphytes retain water under dry-down conditions, leading to small diurnal variability in temperature, low evapotranspiration rates, and enhanced dew deposition at night. We find that dew deposition recharges up to 34 % of epiphyte water storage lost due to evapotranspiration over a 3-day dry-down event. Our results provide the first quantitative demonstration of the importance of epiphyte water storage on temperature and dew formation in TMCFs. This work sets the foundation for developing a process-based understanding of the effects of epiphyte loss on TMCF ecohydrology.
more »
« less
Data from the publication: Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits
The attached datasets are from the publication: Drought decreases water storage capacity of two arboreal epiphytes with differing ecohydrological traits. Canopy epiphytes, plants that grow on trees, can have a significant influence on canopy water storage, interception, and precipitation fluxes. However, the drought response of the plants at a foliar level may influence their ability to store and capture rainfall. We experimentally tested the effects of leaf desiccation on water storage (Smax) and relevant leaf properties of two canopy epiphytes common in coastal maritime forests in Georgia, U.S.A. Full methodological information can be found in the publication listed under "Related Resources."
more »
« less
- Award ID(s):
- 1954538
- PAR ID:
- 10539633
- Publisher / Repository:
- Hydroshare
- Date Published:
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
-
Sensitive Hydraulic and Stomatal Decline in Extreme Drought Tolerant Species of California CeanothusABSTRACT Identifying the physiological mechanisms by which plants are adapted to drought is critical to predict species responses to climate change. We measured the responses of leaf hydraulic and stomatal conductances (Kleafandgs, respectively) to dehydration, and their association with anatomy, in seven species of CaliforniaCeanothusgrown in a common garden, including some of the most drought‐tolerant species in the semi‐arid flora. We tested for matching of maximum hydraulic supply and demand and quantified the role of decline ofKleafin driving stomatal closure. AcrossCeanothusspecies, maximumKleafandgswere negatively correlated, and bothKleafandgsshowed steep declines with decreasing leaf water potential (i.e., a high sensitivity to dehydration). The leaf water potential at 50% decline ingswas linked with a low ratio of maximum hydraulic supply to demand (i.e., maximumKleaf:gs). This sensitivity ofgs, combined with low minimum epidermal conductance and water storage, could contribute to prolonged leaf survival under drought. The specialized anatomy of subg.Cerastesincludes trichomous stomatal crypts and pronounced hypodermis, and was associated with higher water use efficiency and water storage. Combining our data with comparative literature of other California species, species of subg. Cerastesshow traits associated with greater drought tolerance and reliance on leaf water storage relative to other California species. In addition to drought resistance mechanisms such as mechanical protection and resistance to embolism, drought avoidance mechanisms such as sensitive stomatal closure could contribute importantly to drought tolerance in dry‐climate adapted species.more » « less
-
Abstract Epiphytes are characterized by their ability to survive without a root connection to the ground, but many basic life‐history traits and ecological trade‐offs of this unique aerial growth habit remain largely uncharacterized. Mortality causes are still not well understood, but falling from the host tree has been suggested as a leading cause of epiphyte mortality and community dynamics. Little empirical evidence exists forwhyepiphytes do not survive when forced to become terrestrial, and few studies exist that transplant epiphytes between high‐ and low‐forest strata to test trade‐offs between thriving in canopy environments and survival in the forest understorey.Here, we experimentally test two hypotheses regarding the drivers of epiphyte mortality in a cloud forest of central Panama. We test whether simple contact with terrestrial soil is deleterious to epiphytes, preliminarily testing the epiphyte enemy escape hypothesis, and test the vertical niche differentiation hypothesis, wherein epiphytes are specifically adapted for microsites throughout the vertical forest strata. By monitoring survival, leaf loss and health status of 270 transplanted epiphytes for a year and a half, we pinpoint the extent to which soil contact and height of origin regulate epiphyte performance.We found that contact with terrestrial soil itself was detrimental to epiphytes in situ, providing some of the first empirical data to explain why falling onto the ground, versus falling into the understorey, is particularly fatal to epiphytes. However, we also found that mortality rates vary substantially among taxonomic groups and among epiphytes that originally came from different height strata.Synthesis. Plants that are adapted for the canopy experience a trade‐off with higher mortality when in contact with terrestrial soil. Follow‐up studies should explore the role of terrestrial soil microbes and physiological constraints as potential drivers of decreased grounded epiphyte survival.more » « less
-
Abstract Plants differ widely in how soil drying affects stomatal conductance (gs) and leaf water potential (ψleaf), and in the underlying physiological controls. Efforts to breed crops for drought resilience would benefit from a better understanding of these mechanisms and their diversity. We grew 12 diverse genotypes of common bean (Phaseolus vulgarisL.) and four of tepary bean (P. acutifolius;a highly drought resilient species) in the field under irrigation and post‐flowering drought, and quantified responses ofgsandψleaf, and their controls (soil water potential [ψsoil], evaporative demand [Δw] and plant hydraulic conductance [K]). We hypothesised that (i) common beans would be more “isohydric” (i.e., exhibit strong stomatal closure in drought, minimisingψleafdecline) than tepary beans, and that genotypes with largerψleafdecline (more “anisohydric”) would exhibit (ii) smaller increases in Δw, due to less suppression of evaporative cooling by stomatal closure and hence less canopy warming, but (iii) largerKdeclines due toψleafdecline. Contrary to our hypotheses, we found that half of the common bean genotypes were similarly anisohydric to most tepary beans; canopy temperature was cooler in isohydric genotypes leading to smaller increases in Δwin drought; and that stomatal closure andKdecline were similar in isohydric and anisohydric genotypes.gsandψleafwere virtually insensitive to drought in one tepary genotype (G40068). Our results highlight the potential importance of non‐stomatal mechanisms for leaf cooling, and the variability in drought resilience traits among closely related crop legumes.more » « less
-
Summary Seasonal dynamics in the vertical distribution of leaf area index (LAI) may impact the seasonality of forest productivity in Amazonian forests. However, until recently, fine‐scale observations critical to revealing ecological mechanisms underlying these changes have been lacking.To investigate fine‐scale variation in leaf area with seasonality and drought we conducted monthly ground‐based LiDAR surveys over 4 yr at an Amazon forest site. We analysed temporal changes in vertically structuredLAIalong axes of both canopy height and light environments.Upper canopyLAIincreased during the dry season, whereas lower canopyLAIdecreased. The low canopy decrease was driven by highly illuminated leaves of smaller trees in gaps. By contrast, understoryLAIincreased concurrently with the upper canopy. Hence, tree phenological strategies were stratified by height and light environments. Trends were amplified during a 2015–2016 severe El Niño drought.Leaf area low in the canopy exhibited behaviour consistent with water limitation. Leaf loss from short trees in high light during drought may be associated with strategies to tolerate limited access to deep soil water and stressful leaf environments. Vertically and environmentally structured phenological processes suggest a critical role of canopy structural heterogeneity in seasonal changes in Amazon ecosystem function.more » « less
An official website of the United States government
