This content will become publicly available on August 26, 2025
Security and reliability are primary concerns in any computing paradigm, including quantum computing. Currently, users can access quantum computers through a cloud-based platform where they can run their programs on a suite of quantum computers. As the quantum computing ecosystem grows in popularity and utility, it is reasonable to expect that more companies including untrusted/less-trusted/unreliable vendors will begin offering quantum computers as hardware-as-a-service at varied price/performance points. Since computing time on quantum hardware is expensive and the access queue could be long, the users will be motivated to use the cheaper and readily available but unreliable/less-trusted hardware. The less-trusted vendors can tamper with the results, providing a sub-optimal solution to the user. For applications such as, critical infrastructure optimization, the inferior solution may have significant socio-political implications. Since quantum computers cannot be simulated in classical computers, users have no way of verifying the computation outcome. In this paper, we address this challenge by modeling adversarial tampering and simulating it's impact on both pure quantum and hybrid quantum-classical workloads. To achieve trustworthy computing in a mixed environment of trusted and untrusted hardware, we propose an equitable distribution of total shots (i.e., repeated executions of quantum programs) across hardware options. On average, we note ≈ 30X and ≈ 1.5X improvement across the pure quantum workloads and a maximum improvement of ≈ 5X for hybrid-classical algorithm in the chosen quality metrics. We also propose an intelligent run adaptive shot distribution heuristic leveraging temporal variation in hardware quality to user's advantage, allowing them to identify tampered/untrustworthy hardware at runtime and allocate more number of shots to the reliable hardware, which results in a maximum improvement of ≈ 190X and ≈ 9X across the pure quantum workloads and an improvement of up to ≈ 2.5X for hybrid-classical algorithm.
more » « less- NSF-PAR ID:
- 10539654
- Publisher / Repository:
- Frontiers
- Date Published:
- Journal Name:
- Frontiers in Computer Science
- Volume:
- 6
- ISSN:
- 2624-9898
- Format(s):
- Medium: X
- Sponsoring Org:
- National Science Foundation
More Like this
-
Quantum computing (QC) is a new paradigm offering the potential of exponential speedups over classical computing for certain computational problems. Each additional qubit doubles the size of the computational state space available to a QC algorithm. This exponential scaling underlies QC’s power, but today’s Noisy Intermediate-Scale Quantum (NISQ) devices face significant engineering challenges in scalability. The set of quantum circuits that can be reliably run on NISQ devices is limited by their noisy operations and low qubit counts. This paper introduces CutQC, a scalable hybrid computing approach that combines classical computers and quantum computers to enable evaluation of quantum circuits that cannot be run on classical or quantum computers alone. CutQC cuts large quantum circuits into smaller subcircuits, allowing them to be executed on smaller quantum devices. Classical postprocessing can then reconstruct the output of the original circuit. This approach offers significant runtime speedup compared with the only viable current alternative -- purely classical simulations -- and demonstrates evaluation of quantum circuits that are larger than the limit of QC or classical simulation. Furthermore, in real-system runs, CutQC achieves much higher quantum circuit evaluation fidelity using small prototype quantum computers than the state-of-the-art large NISQ devices achieve. Overall, this hybrid approach allows users to leverage classical and quantum computing resources to evaluate quantum programs far beyond the reach of either one alone.more » « less
-
As the year-to-year gains in speeds of classical computers continue to taper off, computational chemists are increasingly examining quantum computing as a possible route to achieve greater computational performance. Quantum computers, built upon the properties of superposition, interference, and entanglement of quantum bits, offer, in principle, the possibility to outperform classical computers for solving many important classes of problems. In the field of chemistry, quantum algorithm development offers promising propositions for solving classically intractable problems in areas such as electronic structure, chemical quantum dynamics, spectroscopy, and cheminformatics. However, physical implementations of quantum computers are still in their infancy and have yet to outperform classical computers for useful computations. Still, quantum software development for chemistry is a highly active area of research. In this perspective, we summarize recent progress in the areas of quantum computing algorithms, hardware, and software, and we describe the challenges that remain for useful implementations of quantum computing for chemical applications.more » « less
-
null (Ed.)Abstract Quantum computers and algorithms can offer exponential performance improvement over some NP-complete programs which cannot be run efficiently through a Von Neumann computing approach. In this paper, we present BayeSyn, which utilizes an enhanced stochastic program synthesis and Bayesian optimization to automatically generate quantum programs from high-level languages subject to certain constraints. We find that stochastic synthesis can comparatively and efficiently generate a program with a lower cost from the high dimensional program space. We also realize that hyperparameters used in stochastic synthesis play a significant role in determining the optimal program. Therefore, BayeSyn utilizes Bayesian optimization to fine-tune such parameters to generate a suitable quantum program.more » « less
-
null (Ed.)Quantum computers are traditionally operated by programmers at the granularity of a gate-based instruction set. However, the actual device-level control of a quantum computer is performed via analog pulses. We introduce a compiler that exploits direct control at this microarchitectural level to achieve significant improvements for quantum programs. Unlike quantum optimal control, our approach is bootstrapped from existing gate calibrations and the resulting pulses are simple. Our techniques are applicable to any quantum computer and realizable on current devices. We validate our techniques with millions of experimental shots on IBM quantum computers, controlled via the OpenPulse control interface. For representative benchmarks, our pulse control techniques achieve both 1.6x lower error rates and 2x faster execution time, relative to standard gate-based compilation. These improvements are critical in the near-term era of quantum computing, which is bottlenecked by error rates and qubit lifetimes.more » « less
-
Instruction scheduling is a key compiler optimization in quantum computing, just as it is for classical computing. Current schedulers optimize for data parallelism by allowing simultaneous execution of instructions, as long as their qubits do not overlap. However, on many quantum hardware platforms, instructions on overlapping qubits can be executed simultaneously through global interactions. For example, while fan-out in traditional quantum circuits can only be implemented sequentially when viewed at the logical level, global interactions at the physical level allow fan-out to be achieved in one step. We leverage this simultaneous fan-out primitive to optimize circuit synthesis for NISQ (Noisy Intermediate-Scale Quantum) workloads. In addition, we introduce novel quantum memory architectures based on fan-out.Our work also addresses hardware implementation of the fan-out primitive. We perform realistic simulations for trapped ion quantum computers. We also demonstrate experimental proof-of-concept of fan-out with superconducting qubits. We perform depth (runtime) and fidelity estimation for NISQ application circuits and quantum memory architectures under realistic noise models. Our simulations indicate promising results with an asymptotic advantage in runtime, as well as 7–24% reduction in error.more » « less